Технология производства солнечных батарей. Оборудование для производства солнечных батарей

Идея по использованию энергии солнца внедряется очень активно, особенно в солнечных странах. Потому является перспективным предпринимательством. Но любой бизнес должен начинаться с правильно подобранного оборудования для производства солнечных батарей. Предлагаем вам ознакомиться с техническим оснащением бизнеса.

Несмотря на дороговизну, оборудование дома солнечными батареями является более дешевым вариантом электроснабжения, чем проведение линий электропередач.

Для чего используется энергия солнца?

В наше время солнечные батареи широко используются в разных направлениях:

  • портативная электроника – зарядка аккумуляторов разной электротехники;
  • электромобили;
  • авиация – использование энергии солнца самолетами;
  • энергообеспечение зданий – отопление, нагрев воды, освещение и др., очень популярно в тропических и субтропических странах;
  • используются в космосе.

Наиболее перспективный бизнес – обеспечение энергией домов и других зданий. Но так или иначе, вам нужно купить оборудование для производства солнечных батарей.

Оборудование для установки солнечных батарей


Аккумуляторы – накопители энергии солнца. Без них работа солнечных батарей невозможна. Они накапливают энергию днем, а по вечерам и ночам ее можно использовать.

Инверторы – электронной устройство, которые переводят постоянное низкое напряжение заряженных аккумуляторов в высокое переменное промышленной частоты.

Блок бесперебойного питания используют для устройств, на которые негативно влияет резкое исчезновение напряжения.

Контроллер заряда батареи – устройство, что отвечает за своевременное подключение батареи с потребителями – если батарея заряжена не достаточно, контроллер не позволяет сделать соединение.

Техническое оснащение для изготовления


Оборудование для проверки высоким напряжением

Каждый модуль проходит тестирование на пригодность. Проверяет электробезопасность, цепи на обрыв, проводит испытания высоким напряжением, сопротивляемость изоляции. Конструкция аппарата сделана из алюминиевых рам, сенсорных шторок. Её размеры вмещают модули разных размеров (3W – 400W).

Характеристики:

  • габариты, мм: 2 500 х 1 500 х 900;
  • максимальный размер тестируемого модуля, мм: 1 400 х 2 100;
  • параметры теста: напряжение, время разгона, утечка тока;
  • ПО: цифровой микропроцессор с 50-ю программами;

Стол для перемещения с позиционирующими прокладками

Применяется к SPV модулям при разных действиях. Стол оснащают алюминиевыми направляющими. Столешница оборудована специальными шариками, по которым перемещают батарею. Пневматические прокладки в свою очередь удерживают объект в одном положении.

Характеристики:

  • габариты, мм: 2 000 х 1 300 х 900;
  • максимальный размер тестируемого модуля, мм: 2 000 х 1 200;
  • неметаллические шарики;
  • полиуретановые прокладки;
  • анодированный алюминиевый каркас;
  • подъем ручным рычагом;
  • применение: обрезка краев, подключение соединительной коробки, укладка, соединение.

Обрамляющая машина

Склеивает края ленты, наносит мыльную воду, обрамляет и обжимает солнечные модули. Включает вращающейся стол с вакуумными присосками. Машиной может управлять один работник. Оборудование очень разносторонне в использовании, вмещает модули разных размеров (100W – 300W). Дополнительно прессует, обжимает и оклеивает углы.

Характеристики оборудования:

  • габариты, мм: 3 000 х 1 900 х 970;

Машина, очищающая стекло

Это горизонтальная щеточная система с ПЛК. Имеет очень прочную структуру.

Рабочая зона составляет 2 м на 1 м. Толщина стекла: 2 мм – 4 мм. Совершает 7 ступеней очистки, не оставляет разводов.

Процесс очистки:

  • стекло очищается нейлоновой щеткой;
  • ополаскивание деионизированной водой;
  • перемещение в камеру выгрузки;
  • повторное ополаскивание деионизированной водой;
  • отжатие воды с подложек;
  • сушка холодным воздухом;
  • сушка горячим воздухом.

Параметры оборудования:

  • габариты, мм: 4 700 х 2 000 х 1 300;
  • производительность: 30 панелей (2 м х 1 м.) за 1 час;
  • размер стекла, мм: 300х300 – 2 000х1 000;
  • многоступенчатая очистка по стандартам РV;
  • материал: полипропилен.

Оборудование для резки ячеек


Разрезание проводят волоконным лазером. С его помощью можно получить любые размеры. За одну порезку получается 4 ячейки. Установка очень компактная, имеет удобную конструкцию.

Характеристики:

  • размер аппарата, мм: 2 000 х 1 500;
  • размер стола, мм: 400 х 400 х(4 ячейки 156 мм х 156 мм);
  • дисплей: Pentium 4, ПО для лазерной резки
  • лазер: волокнистый;
  • воздушное охлаждение;
  • держатель: вакуумная присоска;
  • минимальный размер рамы, мм: 994 х 666 х 50;
  • гидравлический процесс обрамления.

Зеркальный инспекционный стол

Это важное оборудование для солнечных батарей. Оно используется для визуального контроля солнечных модулей. С помощью зеркала проводится осмотр, можно обнаружить различные дефекты: смещение ячеек, повреждение и др. Этот этап проводится до ламинации.

Характеристики:

  • максимальный размер модуля, мм: 2 000 х 1 000;
  • материал столешницы: стекло или акрил;
  • ручной осмотр с помощью зеркала;
  • наличие освещения.

Ламинаторы солнечных PV модулей

Ламинация защищает устройство от влияния окружающей среды. В качестве покрытия используют специальные органические вещества. Чтобы не было попадания молекул воздуха внутрь устройства, при ламинации используют вакуум.

Оборудование состоит с ламинирующей камеры (высоколегированный алюминиевый сплав). Камера делится на верхнюю и нижнюю. Между ними находится кремниевая прокладка. Весь процесс нагревания камеры контролирует заданная программа. Оборудование имеет предохранители для защиты системы и работника.

Характеристики:

  • работая температура: 150°C;
  • может работать с 3-фазным питанием;
  • автоматический и ручной режим.

Видео: возможности современного производства

Производство солнечных батарей на примере ЗАО “Телеком-СТВ”

"Зеленая" энергетика последние годы развивается достаточно стремительно. В Китае в прошлом году (в 5 раз больше площади Манхеттена). Так же хорошо растет солнечная энергетика и в России.

Но рассчитывая, что наше будущее будет состоять сплошь из солнечных электростанций нужно не забывать следующее...

Производство солнечных панелей является энергоемким процессом. В настоящее время большая часть энергии, используемой для создания солнечных панелей, связана с переработкой ископаемого сырья, поэтому даже производство этих экологически полезных продуктов может способствовать загрязнению и глобальному потеплению.Приблизительно 600 кВтч энергии используется для производства каждого квадратного метра солнечных батарей, чего достаточно для освещения 1000 лампочек мощностью 60 Вт в течение десяти часов. Средняя энергосистема использует около двух или трех панелей, каждая из которых имеет площадь около 2 м2. При установке в выгодном месте солнечная панель может производить до 200 кВтч на квадратный метр электроэнергии в год.

Поэтому энергия, используемая в процессе производства панели, компенсируется только через несколько лет эксплуатации.


Исходным материалом для изготовления солнечных батарей служит трихлорсилан, ядовитый и взрывоопасный продукт. При его перегонке и восстановлении при помощи водорода, получают чистый кремний. Побочным продуктом, на этом этапе производства, является соляная кислота. Далее, кремний плавят и получают слитки, из которых делают элементы солнечных батарей. Для производства солнечных панелей требуется использование многих опасных химических веществ. Яды, такие как мышьяк, хром и ртуть, также являются побочными продуктами производственного процесса. Эти химические вещества могут нанести серьезный ущерб окружающей среде, если их правильно не утилизировать.

При соблюдении технологий улавливания и очистки токсичных газов и жидкостей, производство не будет вредным, но часто, особенно в развивающихся странах, такое оборудование не устанавливается на предприятиях, что приводит к загрязнению окружающей среды. Энергия, используемая в производстве солнечных панелей, не является единственной энергетической затратой. Необходимо также учитывать энергию, используемую для их транспортировки, особенно если панели импортируются из другой части мира. Утилизация солнечных батарей - большая проблема. Многие из материалов, используемых для их изготовления, трудно перерабатывать, а сам процесс рециркуляции требует большого количества энергии.

Недостатки использования солнечной энергии:
1.- Неравномерное распределение энергии Солнца по поверхности планеты. Одни области более солнечные, чем другие;
2. - В пасмурные дни и ночью солнечная энергия недоступна;
3. - Необходимость использования больших площадей под солнечные источники энергии;
4. - Содержание токсичных веществ в фотоэлементах;
5. - Низкий КПД солнечных батарей, среднее значение эффективности не превышает 20%;
6. - Высокая стоимость солнечных фотоэлементов;
7. - Поверхность солнечных панелей и зеркал (для термовоздушных ЭС) нужно очищать от попадающих загрязнений;
8. - При нагреве солнечных элементов, значительно падает эффективность их работы;
9. - Сложная утилизация солнечных панелей.

Человечество стремится перейти на альтернативные источники электрического снабжения, которые помогут сохранить чистоту окружающей среды и сократить затраты на выработку энергии. Производство является современным индустриальным методом. включает в себя приемники солнечного света, аккумуляторы, контролирующие устройства, инверторы и другие приборы, предназначенные для определенных функций.

Солнечная батарея является главным элементом, с которого начинается накопление и лучей. В современном мире для потребителя при выборе панели существует много подводных камней, так как промышленность предлагает большое число изделий, объединенных под одним названием.

Кремниевые солнечные батареи

Эти изделия популярны у современных потребителей. В основу их изготовления положен кремний. Запасы его в недрах широко распространены, добыча сравнительно недорогая. Кремниевые элементы выгодно отличаются уровнем производительности от других батарей солнечного света.

Виды элементов

Производство из кремния ведется следующих типов:

  • монокристаллический;
  • поликристаллический;
  • аморфный.

Различаются вышеназванные формы устройств тем, как компонуются кремниевые атомы в кристалле. Основным отличием элементов становится различный показатель преобразования световой энергии, который у двух первых видов находится приблизительно на одном уровне и превышает значения у приборов из аморфного кремния.

Промышленность сегодняшнего дня предлагает несколько моделей солнечных уловителей света. Отличие их состоит в том, какое применяется оборудование для производства солнечных батарей. Играет роль технология изготовления и разновидность начального материала.

Монокристаллический тип

Эти элементы состоят из силиконовых ячеек, скрепленных между собой. По способу ученого Чохральского производится абсолютно чистый кремний, из которого изготавливают монокристаллы. Следующим процессом является разрезание застывшего и затвердевшего полуфабриката на пластины толщиной от 250 до 300 мкм. Тонкие слои насыщают металлической сеткой электродов. Несмотря на дороговизну производства, такие элементы применяют достаточно широко из-за высокого показателя преобразования (17-22%).

Изготовление поликристаллических элементов

Солнечных батарей из поликристаллов состоит в том, что расплавленная кремниевая масса постепенно охлаждается. Производство не требует дорогого оборудования, следовательно, затраты на получение кремния снижены. Поликристаллические солнечные накопители имеют меньший коэффициент эффективности (11-18%), в отличие от монокристаллических. Это объясняется тем, что в процессе остывания масса кремния насыщается мельчайшими зернистыми пузырьками, что приводит к дополнительному преломлению лучей.

Элементы из аморфного кремния

Изделия относят к особому типу, так как их принадлежность к кремниевому виду исходит от наименования используемого материала, а производство солнечных батарей выполняется по технологии пленочных приборов. Кристалл в процессе изготовления уступает место кремниевому водороду или силону, тонкий слой которых покрывает подложку. Батареи имеют самое низкое значение эффективности, всего до 6%. Элементы, несмотря на существенный недостаток, имеют ряд неоспоримых преимуществ, дающих им право стоять в ряду с вышеназванными типами:

  • значение поглощения оптики выше в два десятка раз, чем у монокристаллических и поликристаллических накопителей;
  • имеет минимальную толщину слоя, всего 1 мкм;
  • пасмурная погода не влияет на работу по преобразованию света, в отличие от других видов;
  • из-за высокого показателя прочности на изгиб без проблем применяется в трудных местах.

Три вышеописанных вида солнечных преобразователей дополняются гибридными изделиями из материалов с двойственными свойствами. Такие характеристики достигаются, если в аморфный кремний включаются микроэлементы или наночастицы. Полученный материал схож с поликристаллическим кремнием, но выгодно отличается от него новыми техническими показателями.

Сырье для производства солнечных батарей пленочного типа из CdTe

Выбор материала диктуется потребностью в уменьшении стоимости изготовления и повышении технических характеристик в работе. Наиболее часто применяется светопоглощающий теллурид кадмия. В 70-е годы прошлого столетия CdTe считался основным претендентом на космическое использование, в современной промышленности он нашел широкое применение в энергетике солнечного света.

Этот материал относят к категории кумулятивных ядов, поэтому не стихают прения по вопросу его вредности. Исследования ученых установили тот факт, что уровень вредного вещества, поступающего в атмосферу, является допустимым и не наносит вреда экологии. Уровень КПД составляет всего 11%, но стоимость преобразуемой электроэнергии от таких элементов ниже на 20-30%, чем от приборов кремниевого вида.

Накопители лучей из селена, меди и индия

Полупроводниками в приборе служат медь, селен и индий, иногда допускается замещение последнего на галлий. Это объясняется высокой востребованностью индия для производства мониторов плоского типа. Поэтому выбран этот вариант замещения, так как материалы имеют похожие свойства. Но для показателя КПД замена играет существенную роль, производство солнечной батареи без галлия повышает эффективность работы устройства на 14%.

Солнечные уловители на полимерной основе

Эти элементы относят к молодым технологиям, так как они недавно появились на рынке. Полупроводники из органики поглощают свет для преобразования его в электрическую энергию. Для производства применяют фуллерены углеродной группы, полифенилен, меди фталоцианин и др. В результате получают тонкие (100 нм) и гибкие пленки, которые в работе выдают коэффициент эффективности 5-7%. Величина небольшая, но производство гибких солнечных батарей имеет несколько положительных моментов:

  • для изготовления не затрачиваются большие средства;
  • возможность установки гибких батарей в местах изгибов, где эластичность имеет первоочередное значение;
  • сравнительная легкость и доступность установки;
  • гибкие батареи не оказывают вредного воздействия на окружающую среду.

Химическое травление в процессе производства

Самой дорогой в солнечной батарее является мультикристаллическая или монокристаллическая пластина из кремния. Для максимально рационального режут псевдоквадратные фигуры, эта же форма позволяет плотно уложить пластины в будущем модуле. После процесса резки на поверхности остаются микроскопические слои нарушенной поверхности, которые убираются при помощи травления и текстурирования, чтобы улучшить прием падающих лучей.

Обработанная подобным способом поверхность представляет собой хаотично расположенные микропирамиды, отражаясь от грани которых, свет попадает на боковые поверхности других выступов. Процедура рыхления текстуры понижает отражающую способность материала приблизительно на 25%. В процессе травления применяют серию кислотных и щелочных обработок, но недопустимо сильно уменьшать толщину слоя, так как пластина не выдерживает следующие обработки.

Полупроводники в солнечных батареях

Технология производства солнечных батарей предполагает, что основным понятием твердой электроники является p-n-переход. Если в одной пластине совместить электронную проводимость n-типа и дырочную проводимость p-типа, то в месте соприкосновения их возникает p-n-переход. Основным физическим свойством указанного определения становится возможность служить барьером и пропускать электричество в одном направлении. Именно такой эффект позволяет наладить полноценную работу солнечных элементов.

В результате проведения фосфорной диффузии на торцах пластины складывается слой n-типа, который базируется у поверхности элемента на глубине всего 0,5 мкм. Производство солнечной батареи предусматривает неглубокое проникновение носителей противоположных знаков, которые возникают под действием света. Их путь в зону влияния p-n-перехода должен быть коротким, иначе они могут при встрече погасить один другого, при этом не сгенерировав никакого количества электричества.

Использование плазмохимического травления

В конструкции солнечной батареи предусмотрены лицевая поверхность с установленной решеткой для съемки тока и тыльная сторона, представляющая собой сплошной контакт. Во время явления диффузии возникает электрическое замыкание между двумя плоскостями и передается на торец.

Чтобы удалить замыкание, применяется оборудование для солнечных батарей, позволяющее сделать это с помощью плазмохимического, химического травления или механическим, лазерным путем. Часто используется метод плазмохимического воздействия. Травление выполняется одновременно для стопки сложенных вместе пластин кремния. Исход процесса зависит от длительности обработки, состава средства, размера квадратов материала, направления струй ионного потока и других факторов.

Нанесение антиотражающего покрытия

При помощи нанесения текстуры на поверхности элемента снижается отражение до 11%. Это обозначает, что десятая часть лучей попросту отражается от поверхности и не принимает участия в образовании электричества. С целью уменьшения таких потерь на лицевую сторону элемента наносят покрытие с глубоким проникновением световых импульсов, не отражающее их обратно. Ученые, принимая во внимание законы оптики, определяют состав и толщину слоя, поэтому производство и установка солнечных батарей с таким покрытием уменьшают отражение до 2%.

Контактная металлизация с лицевой стороны

Поверхность элемента предназначена для поглощения наибольшего количества излучения, именно этим требованием определяются размерные и технические характеристики наносимой металлической сетки. Выбирая дизайн лицевой стороны, инженеры решают две противоположные проблемы. Снижение оптических потерь происходит при более тонких линиях и расположении их на большом расстоянии одна от другой. Производство солнечной батареи с увеличенными размерами сетки приводит к тому, что часть зарядов не успевает достичь контакта и теряется.

Поэтому учеными стандартизировано значение расстояния и толщины линии для каждого металла. Слишком тонкие полоски открывают пространство на поверхности элемента для поглощения лучей, но не проводят сильный ток. Современные методы нанесения металлизации состоят в трафаретном печатании. В качестве материала наиболее оправдывает себя серебросодержащая паста. За счет ее применения КПД элемента поднимается на 15-17%.

Металлизация на тыльной стороне прибора

Нанесение металла на тыльную сторону устройства происходит по двум схемам, каждая из которых выполняет собственную работу. Сплошным тонким слоем по всей поверхности, кроме отдельных отверстий, напыляют алюминий, а отверстия заполняют серебросодержащей пастой, играющей контактную роль. Сплошной алюминиевый слой служит своеобразным зеркальным устройством с тыльной стороны для свободных зарядов, которые могут потеряться в оборванных кристаллических связях решетки. С таким покрытием на 2% больше по мощности работают солнечные батареи. Отзывы потребителей говорят, что такие элементы более долговечны и не так сильно зависят от пасмурной погоды.

Изготовление солнечных батарей своими руками

Источники питания от солнца не каждый может заказать и установить у себя дома, так как их стоимость на сегодняшний день достаточно велика. Поэтому многие мастера и умельцы осваивают производство солнечных батарей дома.

Приобрести комплекты фотоэлементов для самостоятельной сборки можно в интернете на различных сайтах. Стоимость их зависит от количества применяемых пластин и мощности. Например, небольшой мощности комплекты, от 63 до 76 Вт с 36 пластинами, стоят 2350-2560 руб. соответственно. Здесь же приобретают рабочие элементы, отбракованные с производственных линий по каким-либо причинам.

При выборе типа фотоэлектрического преобразователя принимают во внимание тот факт, что поликристаллические элементы более устойчивы к пасмурной погоде и работают при ней эффективнее монокристаллических, но имеют меньший срок службы. Монокристаллические обладают более высоким КПД в солнечную погоду, и прослужат они гораздо дольше.

Чтобы организовать производство солнечных батарей в домашних условиях, нужно подсчитать общую нагрузку всех приборов, которые будут питаться от будущего преобразователя, и определиться с мощностью устройства. Отсюда вытекает количество фотоэлементов, при этом учитывают угол наклона панели. Некоторые мастера предусматривают возможность изменения положения накопительной плоскости в зависимости от высоты солнцестояния, а зимой - от толщины выпавшего снега.

Для изготовления корпуса применяют различные материалы. Чаще всего ставят алюминиевые или нержавеющие уголки, используют фанеру, ДСП и др. Прозрачная часть выполняется из органического или обыкновенного стекла. В продаже есть фотоэлементы с уже припаянными проводниками, такие покупать предпочтительнее, так как упрощается задача сборки. Пластины не складывают одну на другую - нижние могут дать микротрещины. Припой и флюс наносятся предварительно. Паять элементы удобнее, расположив их сразу на рабочей стороне. В конце крайние пластины приваривают к шинам (более широким проводникам), после этого выводят "минус" и "плюс".

После проделанной работы тестируют панель и герметизируют. Зарубежные мастера для этого используют компаунды, но для наших умельцев они стоят довольно дорого. Самодельные преобразователи герметизируют силиконом, а тыльную сторону покрывают лаком на основе акрила.

В заключение следует сказать, что отзывы мастеров, которые сделали всегда положительные. Однажды затратив средства на изготовление и установку преобразователя, семья очень быстро их окупает и начинает экономить, используя бесплатную энергию.

В условиях постоянного повышения цен на энергоресурсы, все больше внимания уделяется альтернативным источникам электроэнергии. Таким путем снижается зависимость от централизованных поставок, улучшается экологическая обстановка. Одним из направлений является производство солнечных батарей, которое к настоящему времени в целом обеспечивает растущие потребности населения.

Широким спросом пользуется продукция не только зарубежных изготовителей, но и российского производства. Технологические процессы уже достаточно отработаны, они постоянно развиваются и совершенствуются, способствуя повышению эффективности и качества изделий.

Что такое солнечная батарея

Первые эксперименты в области солнечной энергетики начались в середине прошлого века. Ведущие индустриальные страны попытались использовать термальные станции для получения электрической энергии. Данная технология предполагала нагревание воды концентрированными солнечными лучами, после чего она превращалась в пар. Затем этот пар под давлением подавался на турбины генератора, заставлял их вращаться, в результате чего начинала вырабатываться электроэнергия.

В этих установках солнечная энергия неоднократно трансформировалась, поэтому их эффективность была на очень низком уровне. Постепенно, с развитием производства полупроводников, появились устройства, напрямую преобразующие солнечные лучи в электрический ток. Это стало возможно, благодаря фотоэлектрическому эффекту, открытому еще в 19-м веке. Но вплотную приблизиться к созданию настоящей солнечной батареи удалось только благодаря полупроводникам. Постепенно началось их массовое производство, в том числе и в РФ.

Наиболее эффективным полупроводником оказался кремний, применяющийся в большинстве современных солнечных панелей. Под действием солнечных лучей верхняя пластина нагревается и атомы кремния начинают испускать электроны, занимающие места дырок в нижней пластине. Поскольку электроны стремятся занять свое исходное положение, они начинают двигаться снизу в сторону верхней пластины. Но, на свое место они сразу не попадают, а по соединительным проводникам поступают в аккумулятор и отдают часть энергии на его зарядку. После этого они занимают свое место и весь процесс начинается вновь. Он прекращается с наступлением темноты и значительно снижается в пасмурную погоду.

Наибольший эффект получается от фотоэлементов, созданных на основе монокристаллического кремния, в том числе и российского производства. В таких кристаллах минимальное количество граней, что обеспечивает прямолинейное движение электронов.

Как устроена солнечная панель

В конструкцию панели входит определенное количество элементов, являющихся фотоэлектрическими преобразователями. С их помощью солнечная энергия превращается непосредственно в электрическую. Основным материалом для изготовления служит , выращенный искусственным путем. Они производятся по разным технологиям и отличаются коэффициентом полезного действия.

Эффективность фотоэлементов определяется их полезной мощностью, которая зависит от напряжения и выходного тока. На состояние этих параметров оказывает влияние интенсивность солнечного излучения, попадающего на поверхность панели. Значение выходного тока зависит еще и от размеров фотоэлементов: чем ярче свет, тем сильнее генерация тока. При пасмурной погоде происходит резкое снижение зарядного тока и отдаваемой мощности.

Соединение фотоэлементов между собой осуществляется с помощью . В первом случае это способствует увеличению выходного напряжения, а во втором - выходного тока. Обычно используется комбинированный способ, позволяющий улучшить оба показателя и сделать их наиболее оптимальными. Данное соединение обеспечивает надежную работу всей панели, даже, если какой-то из элементов вышел из строя.

При попадании одного из фотоэлементов в тень, он на этот период сам становится потребителем тока из-за разрядки аккумулятора. В подобной ситуации возможен его перегрев и выход из строя. Чтобы этого не произошло, выполняется шунтирование диодами по 4 штуки на каждый элемент. При частичном попадании панели в тень, ток начинает проходить через диоды, что и спасает затененные места от перегревания.

Весь набор фотоэлементов размещается в общем корпусе, соединяющем и скрепляющем всю конструкцию. Каркас изготавливается из алюминиевого профиля, а для защиты используется специальное закаленное стекло, покрытое отражающей пленкой. Шунтирующие диоды размещаются в распределительной коробке.

Солнечная батарея не может отдавать выработанный ток непосредственно потребителю. Для этой цели используется специальное оборудование - , соединительные провода и другие детали.

Разновидности кремниевых установок

Прежде чем рассматривать изготовление солнечных батарей, необходимо изучить материалы, используемые в фотоэлектрическом слое элементов. Это связано с тем, что каждый материал требует собственной технологии производства и в конечном итоге влияет на характеристики и стоимость конкретного изделия.

В большинстве солнечных панелей применяются кремниевые кристаллы. Разрабатываются батареи с другими материалами, однако, несмотря на их высокий , они не нашли широкого применения из-за своей высокой стоимости. В настоящее время производители солнечных батарей не изготовляют таких устройств, поскольку это неэффективно и нецелесообразно.

Элементы на основе кремния обладают повышенной чувствительностью к нагреву. Для замеров электрической генерации используется базовая температура в 25 градусов. С каждым повышением ее на 1 градус происходит снижение эффективности панелей до 0,5%. Основой кремния служат размолотые кристаллы кварцевого песка, превращенного в порошок.

В зависимости от способа производства, все панели разделяются на следующие виды.

Монокристаллические

Отличаются темно-синим цветом, равномерно распределенным по всей поверхности. Изготавливаются из наиболее чистого кремния, что позволяет получить лучший КПД, хотя и за высокую цену. Такая повышенная стоимость получается за счет сложности технологических процессов, ориентирующих кристаллы в одном направлении. В этом случае для максимального КПД требуется строго перпендикулярное падение лучей солнца на поверхность фотоэлементов.

В связи с этим, монокристаллическим панелям необходимо дополнительное оборудование, обеспечивающее их вращение и приведение в нужное положение в течение дня. Среди них широким спросом пользуются российские солнечные панели.

Поликристаллические

Обладают неравномерным синим окрасом различной интенсивности по причине хаотичной ориентации кристаллов. В фотоэлементах используется кремний, не такой чистый как в монокристаллическом варианте, однако, из-за различной направленности кристаллов обеспечиваются хорошие показатели КПД даже в пасмурную погоду.

Более низкие требования и неоднородная структура кремния существенно удешевляет его производство, что влияет и на конечную стоимость таких панелей. Им не требуется постоянная ориентация относительно солнца, поэтому они чаще всего устанавливаются на крышах частных домов и промышленных объектов.

Панели с аморфным кремнием

Технология изготовления совсем другая по сравнению с предыдущими вариантами. В данном случае применяется не чистый кремний, а гидрид кремния, разогреваемый до состояния пара и осаждаемый на специальную подложку. У таких панелей сравнительно низкий КПД - всего 8-9%, но и цена у них небольшая.

Сегодня показатель КПД удалось поднять до 12%, но таких изделий на рынке еще очень мало, и они дорогие. На эффективность аморфных панелей не оказывает влияния даже значительное повышение температуры.

Изготовление фотоэлементов

На всех специализированных предприятиях производство солнечных батарей начинается с изготовления фотоэлементов. Для каждого типа кристаллов существует собственная технология производства.

Монокристаллический кремний получается в результате термической обработки исходного сырья. На выходе получается слиток материала в виде прямоугольного бруска с однородной кристаллической решеткой и высокой степенью чистоты. Углы бруска обрезаются, а сам он разрезается на тонкие пластинки. В результате получаются квадраты с закругленными углами, которые используются в качестве фотоэлементов.

Производство поликристаллических элементов более простое, поскольку не требуется выращивание кристаллов с однородной структурой. Здесь также используется термическая обработка сырья. После разрезания брусков получаются тонкие пластинки с видимой разнородной структурой и хаотичным расположением частичек. Свет, попадая на них, отражается на соседние частички, в результате чего, общая отражающая способность снижается примерно на 25%.

Для улучшения поглощающих свойств поверхность пластинок последовательно обрабатывается щелочами и кислотами. Данную технологию применяет практически каждый завод по производству солнечных батарей.

Аморфные панели изготавливаются методом напыления гидрида кремния на жесткую или гибкую поверхность. С целью придания определенных свойств, в распыленный материал добавляются различные наночастицы и микроэлементы.

Готовые пластины покрываются специальным материалом, снижающим отражающие свойства. В противном случае, примерно 10% излучения отразится назад и выпадет из процесса генерации электрического тока. За счет покрытия, свет проникает максимально глубоко и не отражается обратно.

Производство солнечных панелей

Для сбора заряда на лицевую сторону пластины наносится металлизированная сетка с оптимальной толщиной линий и их расположением относительно друг друга. Как правило, используется специальная паста, содержащая серебро. Высокая проводимость серебра позволяет увеличить КПД фотоэлементов на 15%. Далее, из полученных фотоэлементов собираются солнечные батареи в общую конструкцию.

Все производство готовых изделий можно условно разделить на несколько этапов:

  • В первую очередь выполняется тестирование, замеряют электрические характеристики. Для этот используют ксеноновые лампы, способные производить мощные вспышки. По итогам испытаний элементы сортируются и переходят на следующий этап.
  • Из готовых элементов выполняется формирование секций, укладываемых на стеклянную подложку. Для укладки используются специальные вакуумные захваты, чтобы исключить любое воздействие на пластины. Один блок состоит из 4-6 секций, а каждая секция включает в себя 9-10 фотоэлектрических пластин. Соединение блоков между собой осуществляется методом пайки, поэтому каждый собранный таким образом компонент, служит дольше.
  • Далее выполняется ламинирование соединенных блоков этиленвинилацетатной пленкой, после чего на поверхность наносится защитное покрытие. Все операции производятся на оборудовании с ЧПУ, а параметры ламинирования контролируются в течение всего процесса.
  • На последнем этапе готовая конструкция помещается в рамку из алюминиевого профиля. Все соединения выполняются клеем-герметиком. По окончании сборки готовые солнечные панели вновь тестируются на соответствие выдаваемых параметров нормативным показателям. Такие меры позволяют снизить процент брака и увеличить срок службы солнечных батарей.

Производители солнечных батарей

Солнечные батареи уже давно перешли из стадии экспериментов в широкое промышленное производство. Хорошую и качественную продукцию выпускают отечественные заводы. Вниманию потребителей предлагаются следующие российские производители солнечных панелей.

Зеленоградская компания ЗАО «Телеком-СТВ» (Москва и Подмосковье)

Их продукция примерно на 30% дешевле зарубежных аналогов. Панель, мощностью 100 Вт, стоит примерно 6000 рублей, при заявленном КПД 20%. Предприятие специализируется на выпуске монокристаллических панелей.

Рязанский завод металлокерамических приборов (ЗМКП)

Один из популярных в России завод. Основной упор также делается на монокристаллы. Налажен выпуск дополнительного оборудования - инверторов, контроллеров и других компонентов. Производятся панели небольшой мощности для зарядки мобильных устройств.

Краснодарский завод «Сатурн»

В технологиях применяются металлические, струнные, сетчатые и другие типы каркасов. Продукция компании «Сатурн» отличается высокими эксплуатационными характеристиками не только в обычных условиях, но и в космосе. Предприятие «Сатурн» выполняет полный цикл работ по проектированию, изготовлению и испытанию солнечных панелей, считается одним из лучших предприятий.

НПП «Квант»

Специализируются на выпуске солнечных панелей с двухсторонней чувствительностью. Кроме традиционных материалов, используют арсенид галлия. Самой популярной моделью является Квант КСМ-180П, мощностью 185 Вт, с напряжением 36 В. Срок эксплуатации, заявленный изготовителем, составляет 40 лет, ориентировочная стоимость - 20000 рублей.

Мировой вклад России в производство фотоэлектрических станций на сегодняшний день составляет не более 1% , тогда как солнечная фотоэнергетика является одной из наиболее быстро растущих отраслей мировой экономики (мировой темп роста - 30-50% в год). При этом в нашей стране пока еще нет лабораторий осуществляющих испытания и сертификацию солнечных элементов и модулей по международным стандартам. Поэтому для Европы Россия в смысле солнечной энергетики , пока является «белым пятном».

Стоит отметить, что солнечные батареи характеризуются рядом неоспоримых преимуществ :

  • фотоэлектрические электростанции (ФЭС) самые экологически чистые и легко возводимые, благодаря своей модульной конструкции;
  • ФЭС характеризует высокая надежность (до сих пор они являются источником питания практически для всех спутников на земной орбите, потому что работают без поломок и почти не требуют технического обслуживания);
  • низкие текущие расходы (благодаря отсутствию подвижных частей, ФЭС не требуют особого ухода);
  • экологичность (это бесшумные и чистые модули, при их работе не происходит сжигания топлива);
  • модульность (благодаря этому свойству, ФЭС могут достигать совершенно различных размеров, в зависимости от потребности в электроэнергии);
  • длительный срок службы (работают до 30 лет);
  • низкие затраты на строительство (обычно ФЭС строят близко к потребителю, т. е. нет нужды тянуть линии электропередач на дальние расстояния, не нужно закупать трансформаторы);
  • независимость ФЭС от изменения цен на энергоносители.

Особенной популярностью солнечные батареи пользуются в южных странах, где их устанавливают непосредственно на крышах жилых домов. Можно назвать несколько крупных «солнечных парков» : «Солнечный парк» PEX в Испании на 30 МВт, способный обеспечить энергией до 16000 домов, «Солнечный парк» в Баварии на 11 МВт и в Лейпциге на 5 МВт, в Португалии - на 11 МВт, в Южной Корее на 4 МВт и в Израиле — на 100 МВт.

На сегодняшний день существует несколько технологий производства солнечных батарей , основанных на использовании того или иного материала при изготовлении пластины. Основано это на различном поглощении разными материалами солнечного излучения.

Среди широко используемых материалов можно назвать моно- и поликристаллический кремний, а также GaAs, CdTe, аморфный кремний и многие другие. В соответствии с выбранным материалом применяется определенная технология, которая отличается этапами производства и набором оборудования.

Наиболее часто в качестве сырья используется моно- и поликристаллический кремний . КПД пластин на основе этого материала колеблется в пределах от 13 до 18% (в настоящее время ведущие производители солнечных батарей пытаются повысить КПД до 19%). Такие пластины очень хрупкие, требуют дополнительной защиты, но значительно дешевле пластин из других материалов.

Тонкопленочная технология основана на использовании таких материалов, как CdTe, GaAs или аморфный кремний. КПД таких пластин также не превышает 20%, хотя в перспективе есть планы увеличения его до 22%. В зависимости от используемой подложки такие батареи могут гнуться, весьма устойчивы к механическим воздействиям, герметичны. Стоимость их выше стоимости кремниевых систем.

На сегодняшний день производство солнечных батарей в промышленном масштабе наиболее рентабельно выполнять по кремниевой технологии, это наиболее изученная и дающая наивысший выход технология производства.

Ниже приведена схема производства солнечных батарей на основе мультикристаллического кремния. Данная цепочка складывается из следующих этапов:

  • Подготовка кремниевой пластины, очистка ее после резки, промывка;
  • Структурирование поверхности пластины, создание топологии на ее поверхности, травление;
  • Легирование, нанесение фосфора;
  • Диффузия фосфора, вжигание;
  • Создание P-n-перехода, изолирование его, удаление не нужных слоев;
  • Нанесение антиотражающего слоя SiN;
  • Металлизация (создание металлических контактов на обратной стороне пластины методом трафаретной печати);
  • Сушка и вжигание;
  • Создание контактов на лицевой стороне пластины;
  • Выравнивание пластины;
  • Проверка и тестирование.

Оборудование под каждый из этапов поставляют европейские и американские компании - RENA, Roth&Rau, DESPATCH, BACCINI, MANZ - одни из мировых лидеров по производству оборудования в сфере солнечной энергетики.