Изометрия вид сверху. Как начертить изометрическую проекцию

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры , расположенные горизонтально.

1. квадрата показано на рис. 1, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у - половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Рис. 1. Аксонометрические проекции квадрата:

2. Построение аксонометрической проекции треугольника показано на рис. 2, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/ 2, а по оси у - его высоту h (для фронтальной диметрической проекции половину высоты h/2 ). Полученные точки соединяют отрезками прямых.

Рис. 2. Аксонометрические проекции треугольника:

а - фронтальная диметрическая; б - изометрическая

3. Построение аксонометрической проекции правильного шестиугольника показано на рис. 3.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника . По оси у симметрично точке О откладывают отрезки s/2 , равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n , полученных на оси у , проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.


Рис. 3. Аксонометрические проекции правильного шестиугольника:

а - фронтальная диметрическая; б - изометрическая

4. Построение аксонометрической проекции окружности .

Фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подобных представленными на рис. 4.

Рис.4. Фронтальные диметрические проекции деталей

На рис. 5. дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями. Окружности , расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами . Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем.

Рис.5. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием .

Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 6, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 6, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 6, в).

Рис. 6. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

Изометрические проекции окружностей .

Квадрат в изометрической проекции проецируется в ромб . Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 7), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Рис. 7. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 8, а). Для этого через точку О проводят изометрические оси х и у, и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, b , с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал . Для этого из вершин тупых углов (точек А и В ) описывают дуги радиусом R , равным расстоянию от вершины тупого угла (точек А и В ) до точек a, b или с, d соответственно. От точки В к точкам а и b проводят прямые (рис. 8, б); пересечение этих прямых с большей диагональю ромба дает точки С и D , которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db ). Дугами этого радиуса сопрягают большие дуги овала.

Рис. 8. Построение овала в плоскости, перпендикулярной оси z.

Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 7). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 9, а), а овала 2 (см. рис. 7) - на осях х и z (рис. 9, б).


Рис. 9. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием .

Если на изометрической проекции детали нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани, представленное на рисунке. 10, а.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 7.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 10, а).

2. Строят ромб , сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 10, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 10, в).

4. Проводят малые дуги (рис. 10, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 10, д).


Рис. 10. Построение изометрической проекции детали с цилиндрическим отверстием

Перспектива дома. Перспективной проекцией (перспективой) называют изображение предмета (дома), полученное способом центрального проецирования. Основная особенность перспективы – перспективное сокращение, то есть кажущееся уменьшение предметов по мере их удаления от наблюдателя. Степень этого уменьшения пропорциональна расстоянию от предмета. Чем ближе предмет расположен к наблюдателю, тем он воспринимается в перспективе больше по сравнению с одинаковым с ним, но более удаленным предметом (рис. 1). В результате параллельные прямые воспринимаются сходящимися в одной точке – точке схода F. Для горизонтальных прямых точка схода расположена на линии горизонта. Вертикальные прямые в перспективе остаются параллельными друг другу (вертикальные ребра дома).

Характер перспективного изображения предмета зависит от положения точки зрения наблюдателя. Видимая форма предмета меняется при перемещении наблюдателя вправо и влево относительно первоначальной точки зрения, при обходе вокруг предмета, а также при изменении дистанции наблюдения (рис. 2).

Сходимость прямых линий, или перспективный ракурс, тем больше, чем ближе расположена точка зрения к объекту наблюдения. Если наблюдатель находится близко к предмету (точка 1 – горизонтальный угол зрения 45°), то сходимость горизонтальных прямых становится значительной, причем точки схода F1 и F2 прямых приближаются к предмету. По мере удаления точки зрения перспективный ракурс уменьшается и точки схода прямых линий удаляются вправо и влево и обычно оказываются за пределами листа. Перспективное изображение предмета в этих случаях выглядит по-разному. При близкой точке зрения перспектива предмета имеет большую выразительность и экспрессию, но вместе с тем и неестественный вид. При дальней точке зрения и небольшом угле зрения перспектива предмета становится “вялой” и невыразительной. Наиболее естественным и выразительным является перспективное изображение II (угол зрения 30°).

Таким образом, на перспективной проекции отражаются не только форма и положение предмета в пространстве, но и точка зрения, то есть положение наблюдателя относительно предмета. Поэтому так важно правильно выбрать точку зрения (наилучшие углы 20…400) и расстояние до предмета при построении перспективы.

Рис. 1. Перспективное сокращение равных по высоте элементов объекта по мере их удаления от наблюдателя в глубину и перспективная сходимость параллельных прямых в точке схода

Рис. 2. Влияние дистанции наблюдения на перспективное изображение предмета: а – фасад; б – план; в – перспектива предмета; 1…3 – точки зрения; I-III – изображения предмета из соответствующих точек зрения; К – картинная плоскость; F1, F2 – точки схода; h-h – линия горизонта

Рис. 3. Построение перспективы прямоугольного дома

Рис. 4. Построение перспективы дома со скатной кровлей: а, б – фасады дома; в – план дома; г – перспектива дома

Чтобы построить перспективу прямоугольного дома, необходимо иметь две его прямоугольные проекции – фасад и план (рис. 3, а, б). На плане дома определяем положение центра проецирования, точки зрения S (положение наблюдателя) и плоскости проекций, или картинной плоскости К. На фасаде показываем линию горизонта h-h. Из точки зрения S проводим через характерные точки плана дома II, III проецирующие прямые и определяем точки 2 и 3 их пересечения с плоскостью К. Находим точки схода параллельных прямых продольного F1 и поперечного F2 направлений. Для этого проводим из точки зрения S прямые, параллельные соответствующим сторонам плана дома, до пересечения с плоскостью К. Полученные точки переносим на перспективу (рис. 3, в). Перспектива дома построена с увеличением исходных данных (план, фасад) в 2 раза.

На плане (см. рис. 3, а) в точке, где плоскость совпадает с ближним углом дома, его вертикальное ребро проецируется в натуральный размер. Остальные вертикальные ребра дома проецируются з уменьшенном размере. Размер ребра переносим на перспективу. Из концевых точек ребра проводим прямые в точки схода F, и F2. Эти прямые определяют перспективные размеры вертикальных ребер, поскольку горизонтальные прямые в перспективе сходятся в точках схода.

Пример построения перспективы дома со скатной кровлей по заданным ортогональным проекциям (план и фасады)приведен на рисунке 4. Для облегчения построения чертеж дома предельно схематизирован. Картинная плоскость К проходит через передний угол дома. Из точки зрения S проводим прямые, параллельные стенам дома, до пересечения с плоскостью К в точках F1 и F2 и лучи через все точки (углы, окна, кровля и т. д.) плана дома. Отмечаем точки пересечения этих лучей с плоскостью К. Строим перспективу. Для этого вычерчиваем линию горизонта h – h и переносим на нее точки схода F1 и F2, а также все точки, полученные на картинной плоскости в плане.

Проводим через все отмеченные на линии h-h точки вертикальные линии. Поскольку ребро 1-13 находится на картинной плоскости, то на перспективе оно останется без изменений. На вертикальной линии, проходящей через точку 1, откладываем натуральные размеры отрезков фасада рические оси OX, OY и 01. На всех осях откладываем одинаковые отрезки, равные по длине ребру куба. Из полученных точек на осях ОХ и OY проводим прямые линии, параллельные осям ОХ и ОУ, до взаимного их пересечения. Нижняя грань куба (квадрат) будет представлять собой ромб. Из четырех его вершин откладываем отрезки вертикальных прямых, равные по длине ребру куба. Полученные точки соединяем прямыми линиями, параллельными аксонометрическим осям. Получаем изображение верхней и двух боковых видимых граней куба.

Рис. 5. Перспектива двухэтажного пятикомнатного жилого дома (типовой проект Я” 144-12-149)

В прямоугольной диметрии углы между осями X и Z составляют 90 + 7 = 97°, а между осями Z и У 90 + 41 = 131°. При построении этой проекции оси X и У образуют с горизонталью углы соответственно 7 и 41°. Коэффициенты искажения по осям X и Z равны 1, по оси У – 0,5. Положение осей X и У можно найти графическим путем без транспортира. Для этого откладывают по горизонтали в обе стороны от точки пересечения осей по восемь равных отрезков. Затем от полученных точек откладывают вниз с левой стороны один такой отрезок, а с правой – семь.

Рис. 6. Построение прямоугольной изометрии дома со скатной кровлей: а – план; б и в- главный и боковой фасады; г -построение аксонометрических осей и нанесение плана; д – построение скатной кровли; е -построение стен, цоколя и окон

В косоугольной фронтальной изометрии угол между осями Z и У составляет 135°.

При построении этой проекции ось.У образует с горизонталью угол 45°. Фронтальные изометрии также можно выполнить с углами наклона оси У к горизонтали 30 и 60°. Коэффициенты искажения по осям X, У и Z принимают равными 1.

В косоугольной горизонтальной изометрии угол между осями X и У равен 90°, а угол между горизонталью и осью У – 30°, его иногда назначают и 45 и 60°. Коэффициенты искажения по оси X, У и Z принимают равными 1.

В косоугольной фронтальной диметрии угол между осями X и Z составляет 90°, а между осями Z и У равен 135°. Ось У образует с горизонталью угол 45°. Допускается этот угол назначать также 30 или 60°. Коэффициенты искажения по осям X и Z принимают равными 1, а по оси У – 0,5.

Пример построения прямоугольной изометрии дома со скатной кровлей приведен на рисунке 6. Выполняют его на основе плана и двух фасадов дома (они на рисунке предельно схематизированы). Вначале вычерчивают аксонометрические оси. Затем на них откладывают размеры дома в плане и вычерчивают план. Затем пунктирной линией вычерчивают план кровли с коньком. Из четырех точек плана кровли проводят вертикальные прямые длиной, равной высоте низа кровли (от земли), а из крайних точек конька кровли – вертикальные прямые длиной, равной высоте конька кровли (от земли). Соединяют полученные точки и получают аксонометрию кровли. Из точек плана дома откладывают вертикальные отрезки длиной, равной высоте стен дома. На грани стены откладывают высоты цоколя, верха и низа окон и вычерчивают цоколь и окна. Потом удаляют все лишние линии построения и аксонометрические оси, обводят аксонометрию дома.

Рис. 7. Прямоугольная изометрия двухэтажного четырехкомнатного жилого дома с кирпичными стенами (типовой проект К” 144-12-148.2)

Прямоугольная изометрия двухэтажного четырехкомнатного жилого дома со стенами из кирпича приведена на рисунке 7. Она дана для сравнения с перспективой этого же дома, изображенной на рисунке 5. Построение аксонометрии методологически не отличается от построения прямоугольной изометрии, приведенной на рисунке 6. Уточняются лишь отдельные детали и элементы (крыльцо, ограждения лестниц и балконов, дымоходные трубы, облицовки стен, материал кровли и т. д.).

Рис. 8. Прямоугольный разрез-изометрия мансардного дома с подвалом

В практике проектирования применяют разрезы-аксонометрии, которые позволяют выявить внутреннюю конструктивную структуру дома, решение отдельных помещений, лестниц, кровли и т. д. (рис. 8). На них также показывают архитектурное решение отдельных элементов фасада – кровли, труб, окон, крылец и т. п.



- Вычерчивание перспективы и аксонометрии дома

Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.

Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.

Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:

Изометрические, когда все три коэффициента искажения одинаковы (k x =k y =k z);

Диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (k x = k z ≠k y);

Триметрические, когда все три коэффициенты искажения не равны между собой (k x ≠k y ≠k z).

В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.

В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.

Изометрические оси изображены на рисунке 57.


Рисунок 57

Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О - получают направление оси Х. Таким же образом соединяют точку С с точкой О - получают направление оси Y.


Рисунок 58

Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.


Рисунок 59

Построение окружности в прямоугольной изометрической проекции

Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.

Размер большой оси эллипса 1,22d, малой 0,7d, где d - диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ - большая ось эллипса.


Рисунок 60

Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О 1 , О 2 , О 3 , О 4 , являющиеся центрами дуг овала (рисунок 61).

Для определения точек сопряжения проводят линии центров, соединяя О 1 , О 2 , О 3 , О 4 . из полученных центров О 1 , О 2 , О 3 , О 4 проводят дуги радиусами R и R 1 . размеры радиусов видны на чертеже.


Рисунок 61

Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).


Рисунок 62

Штриховка и изометрической проекции

Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.

Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.

По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты k x =k z =1, k y =0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.

Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:

На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа - семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.


Рисунок 63

Построение диметрической проекции шестиугольника

Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П 1 (рисунок 64).


Рисунок 64

На оси Х откладываем отрезок равный величине b , чтобы его середина находилась в точке О, а по оси Y - отрезок а , размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.


Рисунок 65

Построение окружности в диметрии

В прямоугольной диметрии все окружности изображаются эллипсами,

Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей - 0,35 d.

На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).

Через точку О - начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО 1 и ОО 2 , равные по величине 1,06d. Точки О 1 и О 2 являются центром больших дуг овала. Для определения еще двух центров (О 3 и О 4) откладываем на горизонтальной прямой от точек А и В отрезки АО 3 и ВО 4 , равные ¼ величины малой оси эллипса, то есть d.


Рисунок 66

Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 - радиусом до точек А и В (рисунок 67).


Рисунок 67

Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П 2 , рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О 1 , О 2, О 3, О 4 - центры дуг овала (рисунок 68).

Из центров О 3 и О 4 описывают дугу радиусом R 2 =О 3 М, а из центров О 1 и О 2 - дуги радиусом R 1 = О 2 N


Рисунок 68

Штриховка а прямоугольной диметрии

Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).


Рисунок 69

  1. Какие виды аксонометрических проекций вы знаете?
  2. Под каким углом расположены оси в изометрии?
  3. Какую фигуру представляет изометрическая проекция окружности?
  4. Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
  5. Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
  6. Под какими углами расположены оси в диметрии?
  7. Какой фигурой будет являться диметрическая проекция квадрата?
  8. Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
  9. Основные правила нанесения штриховки в аксонометрических проекциях.

Что такое диметрия

Диметрия представляет собой один из видов аксонометрической проекции. Благодаря аксонометрии при одном объемном изображении можно рассматривать объект сразу в трех измерениях. Поскольку коэффициенты искажений всех размеров по 2-м осям одинаковы, данная проекция и получила название диметрия.

Прямоугольная диметрия

При расположении оси Z" вертикально, при этом оси Х" и Y" образуют с горизонтального отрезка углы 7 градуса 10 минут и 41 градус 25 минут. В прямоугольной диметрии коэффициент искажения по оси Y будет составлять 0,47, а по осям Х и Z в два раза больше, то есть 0,94.

Чтобы осущесвить построение приближенно аксонометрические оси обычной диметрии, необходимо принять, что tg 7 градусов 10 минут равен 1/8, а tg 41 градуса 25 минут равен 7/8.

Как построить диметрию

Для начала необходимо начертить оси, чтобы изобразить предмета в диметрии. В любой прямоугольной диметрии углы, находящиеся между осями Х и Z, равны 97 градусов 10 минут, а между осями Y и Z – 131 градусов 25 минут и между Y и Х – 127 градусов 50 минут.

Теперь требуется нанести оси на ортогональные проекции изображаемого предмета, учитывая выбранное положение предмета для вычерчивания в диметрической проекции. После того, как завершите перенос на объемное ихображение габаритных размеров предмета, можете приступать к чертежу незначительных элементов на поверхности предмета.

Стоит запомнить, что окружности в каждой плоскости диметрии изображаются соответствующими эллипсами. В диметрической проекции без искажения по осям Х и Z большая ось нашего эллипса во всех 3-х плоскостях проекции будет составлять 1,06 диаметра нарисованной окружности. А малая ось эллипса в плоскости ХОZ составляет 0,95 диаметра, а в плоскости ZОY и ХОY – 0,35 диаметра. В диметрической проекции с искажением по осям Х и Z большая ось эллипса равняется диаметру окружности во всех плоскостях. В плоскости ХОZ малая ось эллипса составляет 0,9 диаметра, а плоскостях ZОY и ХОY равны 0,33 диаметра.

Чтобы получить более детально изображение, необходимо выполнить вырез через детали на диметрии. Заштриховку при вычеркивании выреза следует наносить параллельно проведенной диагонали проекции выбранного квадрата на необходимую плоскость.

Что такое изометрия

Изометрия является одним из видов аксонометрической проекции, где расстояния единичных отрезков на всех 3-х осях одинаковые. Изометрическая проекция активно используется в машиностроительных чертежах, чтобы отобразить внешний вид предметов, а также в разнообразных компьютерных играх.

В математике изометрия известна как преобразование метрического пространства, которое сохраняет расстояние.

Прямоугольная изометрия

В прямоугольной (ортогональной) изометрии аксонометрические оси создают между собой углы, которые равны 120 градусам. Ось Z находится в вертикальном положении.

Как начертить изометрию

Построение изометрии предмета дает возможность получить наиболее выразительное представление о пространственных свойствах изображаемого объекта.

Перед тем, как начать построение чертежа в изометрической проекции, необходимо выбрать такое расположение изображаемого предмета, чтобы были максимально видны его пространственные свойства.

Теперь вам требуется определиться с видом изометрии, которую будете чертить. Существует два ее вида: прямоугольная и горизонтальная косоугольная.

Нарисуйте оси легкими тонкими линиями, чтобы изображение получилось по центру листа. Как уже раньше говорилось, углы в прямоугольном виде изометрической проекции должны составлять 120 градусов.

Начинайте рисовать изометрию с именно верхней поверхности изображения предмета. От углов получившейся горизонтальной поверхности нужно провести две вертикальные прямые и отложить на них соответствующие линейные размеры предмета. В изометрической проекции все линейные размеры по всех трем осям будут оставаться кратны единице. Затем последовательно требуется соединить созданные точки на вертикальных прямых. В результате получиться внешний контур предмета.

Стоит учитывать, что при изображении любого предмета в изометрической проекции видимость криволинейных деталей будет обязательно искажаться. Окружность должна изображаться эллипсом. Отрезок между точками окружности (эллипса) по осям изометрической проекции должен быть равен диаметру окружности, а оси эллипса не будут совпадать с осями изометрической проекции.

Если изображаемый объект имеет скрытые полости ли сложные элементы, постарайтесь выполнить заштриховку. Она может быть простой либо ступенчатой, все зависит сложности элементов.

Запомните, что все построение должно выполнять строго с применением чертежных инструментов. Применяйте несколько карандашей с разными видами твердости.

Разновидностью которых являются аксонометрические и, в том числе, изометрические проекции, делятся также на ортогональные (перпендикулярные), с направлением проекции перпендикулярным к плоскости проекции, и косоугольные , с углом между направлением и плоскостью, отличным от прямого. По советским стандартам (см. ) аксонометрические проекции могут быть и ортогональными, и косоугольными . По западным же стандартам, аксонометрические проекции являются только ортогональными, а косоугольные проекции рассматриваются отдельно. В результате, по западным стандартам изометрическая проекция определяется более узко и, помимо равенства масштабов по осям, включает условие равенства 120° углов между проекциями любой пары осей. Во избежание путаницы далее, если не указано иное, под изометрической проекцией будет подразумеваться только прямоугольная изометрическая проекция .

Стандартные изометрические проекции

Прямоугольная (ортогональная) изометрическая проекция

В прямоугольной изометрической проекции аксонометрические оси образуют между собой углы в 120°, ось Z" направлена вертикально. Коэффициенты искажения () имеют числовое значение . Как правило, для упрощения построений изометрическую проекцию выполняют без искажений по осям, то есть коэффициент искажения принимают равным 1, в этом случае получают увеличение линейных размеров в раза.

Косоугольная фронтальная изометрическая проекция

Ось Z" направлена вертикально, угол между осью X" и Z" равен 90°, ось Y" с углом наклона 135° (допускается 120° и 150°) от оси Z".

Фронтальная изометрическая проекция выполняется по осям X", Y" и Z" без искажения.

Кривые параллельные фронтальной плоскости проецируются без искажений.

Косоугольная горизонтальная изометрическая проекция

Ось Z" направлена вертикально, между осью Z" и осью Y" угол наклона равен 120° (допускается 135° и 150°), при этом сохраняется угол между осями X" и Y" равным 90°.

Горизонтальную изометрическую проекцию выполняют без искажения по осям X", Y" и Z".

Ограничения аксонометрической проекции

Изометрическая проекция в компьютерных играх и пиксельной графике

Рисунок телевизора в почти-изометрической пиксельной графике. У пиксельного узора видна пропорция 2:1

Примечания

  1. По ГОСТ 2 .317-69 - Единая система конструкторской документации. Аксонометрические проекции.
  2. Здесь горизонтальной называется плоскость, перпендикулярная оси Z (которая является прообразом оси Z").
  3. Ingrid Carlbom, Joseph Paciorek. Planar Geometric Projections and Viewing Transformations // ACM Computing Surveys (CSUR) : журнал. - ACM , декабрь 1978. - Т. 10. - № 4. - С. 465-502. - ISSN 0360-0300 . - DOI :10.1145/356744.356750
  4. Jeff Green. GameSpot Preview: Arcanum (англ.) . GameSpot (29 февраля 2000).(недоступная ссылка - история ) Проверено 29 сентября 2008.
  5. Steve Butts. SimCity 4: Rush Hour Preview (англ.) . IGN (9 сентября 2003). Архивировано
  6. GDC 2004: The History of Zelda (англ.) . IGN (25 марта 2004). Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.