Как измерить децибелы - wikiHow. Теория:Беспроводные сети:Измерение сигнала

]Обычно, децибелами принято измерять громкость звука. Децибел – это десятичный логарифм. Это значит, что увеличение громкости на 10 децибел показывает, что звук стал в два раза громче, чем изначальный. Громкость звука в децибелах обычно описывается формулой 10Log 10 (I/10 -12) , где I - интенсивность звука в ваттах/метр квадратный.

Шаги

Сравнительная таблица уровней шума в децибелах

В приведенной ниже таблице описаны уровни децибел в порядке возрастания, и соответствующие им примеры источников звука. Также предоставлена информация о негативных последствиях для слуха напротив каждого уровня шума.

Уровни децибел для разных источников шума
Децибелы Пример источника Влияние на здоровье
0 Тишина Отсутствуют
10 Дыхание Отсутствуют
20 Шепот Отсутствуют
30 Тихий фоновый шум на природе Отсутствуют
40 Звуки в библиотеке, тихий фоновый шум в городе Отсутствуют
50 Спокойный разговор, обычный фоновый шум для пригорода Отсутствуют
60 Шум офиса или ресторана, громкий разговор Отсутствуют
70 Телевизор, шум шоссе с расстояния 15.2 метров (50 футов) Заметка; некоторым неприятен
80 Шум завода, кухонного комбайна, автомойки с расстояния 6.1 метра (20 футов) Возможны повреждения слуха при длительном воздействии
90 Газонокосилка, мотоцикл с расстояния 7.62 м (25 футов) Высока вероятность повреждения слуха при длительном воздействии
100 Лодочный мотор, отбойный молоток Высока вероятность серьезных повреждений слуха при длительном воздействии
110 Громкий рок-концерт, сталелитейный завод Может быть сразу больно; очень высока вероятность серьезных повреждений слуха при длительном воздействии
120 Цепная пила, гром Обычно наступает моментальная боль
130-150 Взлет истребителя с авианосца Возможна немедленная потеря слуха, или разрыв барабанной перепонки.

Измерение уровня звука с помощью приборов

    Используйте ваш компьютер. Со специальными программами и оборудованием, несложно измерить уровень шума в децибелах прямо на компьютере. Ниже перечислены только некоторые способы, как это можно сделать. Обратите внимание, что использование более качественного записывающего оборудования всегда даст лучший результат; другим словами, микрофона встроенного в ваш ноутбук может быть достаточно для некоторых задач, но высококачественный внешний микрофон даст более точный результат.

  1. Используйте мобильное приложение. Для измерения уровня звука в любом месте, мобильные приложения придутся как нельзя кстати. Микрофон на вашем мобильном устройстве скорее всего не даст такого качества, как внешний микрофон, подключенный к компьютеру, но он может быть на удивление точным. Например, точность считывания на мобильном телефоне вполне может отличаться на 5 децибел от профессионального оборудования. Ниже приведен список программ для считывания уровня звука в децибелах для разных мобильных платформ:

    • Для устройств Apple: Decibel 10th, Decibel Meter Pro, dB Meter, Sound Level Meter
    • Для устройств на Android: Sound Meter, Decibel Meter, Noise Meter, deciBel
    • Для телефонов на Windows: Decibel Meter Free, Cyberx Decibel Meter, Decibel Meter Pro
  2. Используйте профессиональный измеритель децибел. Обычно это недешево, но, возможно, это самый простой способ получить точные измерения уровня звука, который вас интересует. Также такое устройство называют "измеритель уровня звука", это специализированное устройство (можно купить в интернет-магазине или специализированных магазинах), которые использует чувствительный микрофон для измерения уровня шума вокруг и выдает точное значение в децибелах. Так как подобные устройства не пользуются большим спросом, они можно быть достаточно дорогими, зачастую цены на них начинаются с $200 даже за устройства начального класса.

    • Обратите внимание, что измеритель децибел/уровня звука может называть несколько иначе. Например, другое похожее устройство под названием "измеритель шума" делает то же самое, что и измеритель уровня звука.

    Математическое вычисление децибел

    1. Узнайте интенсивность звука в ваттах/метр квадратный. В повседневной жизни, децибелы применяются как простая мера громкости. Однако, все не так просто. В физике децибелы часто рассматривают как удобный способ выражения "интенсивности" звуковой волны. Чем больше амплитуда звуковой волны, тем больше энергии она передает, тем больше частиц воздуха колеблется на ее пути, и тем интенсивнее сам звук. Из-за прямой связи между интенсивностью звуковой волны и громкостью в децибелах, есть возможность найти значение децибел, зная только интенсивность уровня звука (которая обычно измеряется в ваттах/метр квадратный)

      • Заметьте, что для обычных звуков значение интенсивности очень мало. Например, звук с интенсивностью 5 ×10 -5 (или 0.00005) ватт/метр квадратный соответствует приблизительно 80 децибелам, что приблизительно соответствует громкости блендера или кухонного комбайна.
      • Для лучшего понимания отношения между интенсивностью и уровнем децибел, давайте решим одну задачу. Для примера возьмем такую: давайте считать, что мы – звукорежиссеры, и нам нужно опередить уровень фонового шума в студии звукозаписи, чтобы улучшить качество записываемого звука. После установки оборудования, мы зафиксировали фоновый шум интенсивностью 1 × 10 -11 (0.00000000001) ватт/метр квадратный . Далее используя эту информацию мы можем вычислить уровень фонового шума студии в децибелах.
    2. Поделите на 10 -12 . Если вы знаете интенсивность вашего звука, вы можете легко подставить ее в формулу 10Log 10 (I/10 -12) (где "I" – интенсивность в ваттах/метр квадратный) чтобы получить значение в децибелах. Для начала поделите 10 -12 (0.000000000001). 10 -12 отображает интенсивность звука с оценкой 0 на шкале децибел, сравнивая интенсивность вашего звука с этим числом, вы найдете его отношение к начальному значению.

      • В нашем примере мы разделили значение интенсивности 10 -11 на 10 -12 и получили 10 -11 /10 -12 = 10 .
    3. Вычислим Log 10 от этого числа и умножим его на 10. Чтобы закончить решение, вам осталось лишь взять логарифм по основанию 10 от получившегося числа и затем, наконец, умножить его на 10. Это подтверждает, что децибелы – это логарифмическое значение по основанию 10 – другими словами, увеличение уровня шума на 10 децибел говорит об удвоении громкости звука.

      • Наш пример легко решить. Log 10 (10) = 1. 1 ×10 = 10. Поэтому, значение фонового шума в нашей студии равняется 10 децибел . Это достаточно тихо, но все еще улавливаемо нашим высококачественным звукозаписывающим оборудованием, потому нам, вероятно, нужно устранить источник шума для достижения более высокого качества записи.
    4. Понимание логарифмической природы децибел. Как было сказано выше, децибелы – это логарифмические значения с основанием 10. Для любого данного значения децибел, шум на 10 децибел большой – громче изначального в два раза, а шум больший на 20 децибел – в четыре раза и так далее. Это дает возможность обозначить большой промежуток интенсивностей звука, которые могут быть восприняты человеческим ухом. Самый громкий звук, который человек может услышать, не испытывая боли – в миллиард раз более громкий, чем самый тихий звук, который человек может услышать. Используя децибелы, мы избегаем использования огромных чисел для описания обычных звуков - вместо этого нам достаточно трех цифр.

      • Подумайте, что проще использовать: 55 децибел или 3 × 10 -7 ватт/квадратный метр? Оба значения равны, но вместо использования научной формы записи (в виде очень малой доли числа), гораздо удобнее использовать децибелы, которые являются своего рода простым сокращением для легкого повседневного использования.

Беспроводные сети имеют много параметров, которые могут быть измерены. Основными являются:

  • Децибелы (дБ, dB)
  • Децибелмиливаты (дБм, dBm)
  • Изотропные децибелы (ДБи, dBi)
  • Отношение сигнал/шум (ОСШ; англ. signal-to-noise ratio, сокр. SNR)

Децибелы (дБ, dB)

Децибелы - это логарифмическая единица уровней, затуханий и усилений. Величина, выраженная в децибелах, численно равна десятичному логарифму безразмерного отношения физической величины к одноимённой физической величине, принимаемой за исходную, умноженному на десять.

dB = 10 * log 10 (P2/P1)

Простым языком: в разрезе Wi-Fi в Децибелах измеряют то насколько беспроводной сигнал стал сильнее или слабее.

Сила радиочастотного (РЧ) сигнала обычно измеряется ее мощностью в Ваттах (Вт) (англ. W - Watt). Например типичная AM-радиостанция вещает с мощностью 50.000 Ватт; FM-радиостанция может вещать с мощностью 16.000 Ватт. Обычный Wi-Fi передатчик обычно имеет мощность до 0,1 Ватт (100 мВатт).

Когда мощность измеряется в Ваттах или милиВаттах, то это считается абсолютным измерением. Иногда надо сравнить мощность двух разных передатчиков. Например 1-ый передатчик (T1) вещает с мощностью 1 мВт, 2-ой передатчик (T2) вещает с мощностью 10 мВт, а 3-ий передатчик (T3) вещает с мощностью 100 мВт.

Итого: T2 больше чем T1 на 9 мВт и в то же время в 10 раз мощнее, T3 больше чем T2 на 90 мВт и в то же время в 10 раз мощнее.

Более интересная картина получится, если мы попытаемся сравнить 4-ый передатчик (T4), который вещает с мощностью 0,00001 мВт и 5-ый передатчик (T5), который вещает с мощностью 10 мВт.

Итого: T5 больше чем T1 на 9,99999 мВт и в то же время в 1.000.000 раз мощнее.

Так какой же способ использовать? Сравнение абсолютных значений в мВт или сравнение относительных значений в "разах"?

По этой причине начали использовать логарифмическую функцию. Используется десятичный логарифм, который обозначает, в какую степень должно быть возведено число 10, что бы получить нужное число. Например:

  • log 10 (10)=1 потому, что 10 в степени 1 равно 10
  • log 10 (100)=2 потому, что 10 в степени 2 равно 100
  • log 10 (1000)=3 потому, что 10 в степени 3 равно 1000
  • и т. д.

Децибелы (дБ) - это функция, которая использует логарифмы для сравнения двух абсолютных значений друг с другом. После того, как каждое значение мощностью конвертировано в логарифмическую шкалу два значения могут использоваться для вычисления разницы. Следующая формула используется для вычисления мощности в дБ, где P1 и P2 - это абсолютные значения мощности двух передатчиков:

dB = 10(log 10 P2 - log 10 P1)

P2 - это интересующий нас передатчик, а P1 обычно называется относительной мощностью или источником сравнения.

Приведенная выше формула может быть переписана в виде:

dB = 10 * log 10 (P2/P1)

В таком представлении вначале вычисляется абсолютное отношение мощностью двух передатчиков и затем результат конвертируется в логарифмическую шкалу.

Важные факторы про децибелы для запоминания

Изменение мощности Значение в dB
/1000 -30 dB
/100 -20 dB
/10 -10 dB
/2 -3 dB
= 0 dB
x2 +3 dB
x10 +10 dB
x100 +20 dB
x1000 +30 dB

Децибел-миливатты (дБм, dBm)

Децибел-миливатт показывает, во сколько раз измеряемая мощность больше или меньше 1 милливатта. В случае измерения в децибел-миливаттах точкой отсчета является 1 мВт, которая равна уровню сигнала в 0 dBm. В разрезе Wi-Fi в децибел-миливаттах измеряют мощность сигнала, который отдает или принимает беспроводное устройство.

В реальной жизни передатчик может отдавать сигнал мощностью (T x) 100 мВт, а приемник при этом получать (R x) 0,000031623. С помощью приведенной выше формулы мы можем вычислить следующее: dB = 10 * log 10 (0,000031623 мВт / 100 мВт) = -65 dB. Т. е. мы получили, что по мере прохождения сигнала от передатчика к приемнику он изменился на -65 dB.

В децибелах вычисляется отношение мощностей сигналов, а в децибел-миливаттах отношение сигнала и одного миливатта. Таким образом нам ставится удобнее сравнивать каждое абсолютное значение с некоей эталонной точкой отсчета. Если мощность сигнала менее 1 мВт, его уровень отрицателен. Например, чувствительность беспроводного сетевого адаптера стандарта 802.11b при пропускной способности 2 Мбит/с может равняться -90 дБм. Обратите внимание, что dBm может быть добавлена по ходу пути: мощность передатчика dBm + сетевые потери в dB = полученный сигнал в dBm.

Изотропный децибел (дБи, dBi)

Изотропный децибел (dBi) - Разновидность децибела. Характеризует идеальную антенну, у которой диаграмма направленности выглядит в виде идеальной сферы (идеального шара). Как правило, если не оговорено специально, характеристики усиления реальных антенн даются относительно усиления изотропной антенны и измеряются в изотропных децибелах . То есть, когда говорят, что коэффициент усиления какой-либо антенны равен 12 децибел, подразумевается 12 dBi.

Правила действий с размерными величинами

Следующие правила являются следствием правил действий с размерными величинами:

  • перемножать или делить «децибельные» значения нельзя (это бессмысленно);
  • суммирование «децибельных» значений соответствует умножению абсолютных значений, вычитание «децибельных» значений - делению абсолютных значений;
  • суммирование или вычитание «децибельных» значений может выполняться независимо от их «исходной» размерности. Например, равенство 10 дБм + 13 дБ = 23 дБм является корректным, полностью эквивалентно равенству 10 мВт · 20 = 200 мВт и может трактоваться как «усилитель с коэффициентом усиления 13 дБ увеличивает мощность сигнала с 10 дБм до 23 дБм». Но в то же время 10 дБм - 7 дБм = 3 дБ, поскольку это эквивалентно 10 мВт / 5 мВт = 2 (раза).

Примеры операций, их результат и значение:

Вычисления в уме

Операции с децибелами можно выполнять в уме:

  • вместо умножения выполнять сложение
  • вместо деления выполнять вычитание
  • вместо возведения в степень выполнять умножение
  • вместо извлечения корня выполняется деление

Для этого полезно запомнить соответствия:

  • 1 дБ → в ≈1,26 раза
  • 3 дБ → в ≈2 раза
  • 10 дБ → в 10 раз
  • 20 дБ → в 100 раз

6 дБ = 3 дБ + 3 дБ → в ≈2·2 = в 4 раза, 9 дБ = 3 дБ + 3 дБ + 3 дБ → в ≈2·2·2 = в 8 раз, 12 дБ = 4 · (3 дБ) → в ≈2 4 = в 16 раз 13 дБ = 10 дБ + 3 дБ → в ≈10·2 = в 20 раз, 20 дБ = 10 дБ + 10 дБ → в 10·10 = в 100 раз, 30 дБ = 3 · (10 дБ) → в 10³ = в 1000 раз

Более сложные примеры:

Уменьшение мощности в 40 раз это в 2*2*10 раз или на −(3 дБ + 3 дБ + 10 дБ) = −16 дБ; увеличение мощности в 128 раз это 2 7 или на 7·(≈3 дБ) = 21 дБ;

Еще примеры:
Передатчик T1 = 4мВт
Передатчик T2 = 8мВт
Передатчик T3 = 16мВт
Передатчик T4 = 5мВт
Передатчик T5 = 200мВт

В мВт: передатчик T2 = T1*2, а в дБ T2 = T1 + 3 дБ
В мВт: передатчик T3 = T2*2, а в дБ T3 = T2 + 3 дБ
В мВт: передатчик T5 = T4*2*2*10, а в дБ T5 = T4 + 3 + 3 + 10 дБ, т. е. T5 = T4 + 16 дБ

Пример расчета

Итоговую мощность сигнала, которую получит приемник можно рассчитать по формуле:

Сигнал Rx = Мощность передатчика Tx - Потери в кабеле Tx + Усиление антенны Tx - Потери во время передачи по воздуху + Усиление антенны Rx - Потери в кабеле Rx


Для приведенного выше примера:

Сигнал Rx = 20 dBm - 2dB + 4 dBi - 69 dB + 4 dBi - 2dB = -45 dBm

SNR

Отношение сигнал/шум (ОСШ; англ. signal-to-noise ratio, сокр. SNR) - безразмерная величина, равная отношению мощности полезного сигнала к мощности шума.

SNR(dB) = 10 * log 10 (P signal /P noise)

Где signal - средняя мощность сигнала, а P noise - средняя мощность шума.

Чем больше SINR тем лучше. Считается хорошей практикой настраивать точку доступа на работу на канале только если его сигнал больше или равен 19 dBm любому другому сигналу на этом канале. Разделение на 19 dBm помогает поддерживать нормальный уровень SNR.

RSSI

RSSI (англ. received signal strength indicator) (Показатель уровня принимаемого сигнала) - полная мощность принимаемого приёмником сигнала. Измеряется приёмником по логарифмической шкале в дБм (dBm, децибел относительно 1 милливатта). Значение RSSI плохо коррелирует с качеством сигнала, но может использоваться для его приблизительной оценки. Более точную оценку можно получить с помощью параметра индикатор качества сигнала (LQI). Если говорить простым языком, то RSSI - это измерение того насколько "громко" ваше устройство слышит сигнал идущий от точки доступа или маршрутизатора. Важно понимать, что RSSI - это не то же самое, что и мощность передатчика точки доступа. Стандарт IEEE 802.11 определяет, что RSSI может принимать значение между 0 и 255 и каждый производитель беспроводных модулей сам определяет собственное максимальное значение RSSI. Например, у Cisco это значения 0-100, у Atheros 0-60.

RSSI vs dBm

dBm и RSSI это разные единицы измерения, которые представляют одно и то же: уровень сигнала. Разница в том, что RSSI - это относительный индекс, а dBm - это относительное значение представляющие уровень мощности в мВт.

Как определить хороший ли сигнал

При оценке уровня сигнала надо понимать, что это получаемый сигнал в dBm это не единственная характеристика. Вполне реальны ситуации, когда уровень сигнала отличный, но при этом в непосредственной близости имеются другие точки, которые работают на том же канале из-за чего SNR оказывается плохим и, как результат скорость и стабильность работы с точкой будет плохой.

Еще пару лет назад об интернете у себя на даче никто и не мечтал, а сейчас благодаря сотовым операторам и технологии 3G это уже повседневная реальность. Но, к сожалению, беспроводные технологии имеют некоторые недостатки, такие как сложность прохождения радиосигнала через лесную полосу, сложный рельеф местности и другие препятствия. Как решить эту проблему?

Для начала мы по тестируем 3G модем и выясним - при каком уровне сигнала получим какую скорость интернета. В нашем примере будет рассмотрен самый быстрый 3G модем на момент написания статьи (февраль 2013 г.) - это модель Huawei E392.

При -75 дБм мы получили скорость:

При -81 дБм:

При -91 дБм:

При - 100 дБм:

А при уровне сигнала -105 модем вовсе отказался подключаться к сети!

В этом опыте мы наглядно видим, что скорость интернета явно зависит от уровня сигнала.

Также надо понимать, что при одних и тех же исходных условиях - уровень сигнала и модель 3G модема у всех абонентов в разных местах будет разная скорость! Скорость интернета также зависит от пропускной способности базовой станции сотового оператора, т.е. каким образом она подключена: по радиоканалу или оптическому волокну. Еще скорость зависит от количества абонентов. Например, БС оператора на выходе выдает 100 Мбит/сек. В какой то момент времени интернетом пользуются 20 человек и соответственно скорость будет 100/20= 5 Мбит/сек на одного абонента. В свою очередь, если интернетом будут пользоваться 50 абонентов в округе, то скорость каждому будет не более 2 Мбит/сек. В большинстве случаев многие замечают, что скорость 3G интернета после обеда начинает медленно падать и пик падения наблюдается вечером, когда нагрузка интернет трафика на сотовые сети является максимальной.

Антенна 3G

Любая антенна - это пассивный усилитель сигнала!

Рассмотрим самый распространенный случай - подключение 3G модема через антенну, которая ставится на крышу загородного дома. Далее от этой антенны сигнал ведется по коаксиальному кабелю 50 Ом в помещение к модему, который в свою очередь включается в компьютер, ноутбук или WiFi роутер.


В целом схема выглядит таким образом:

Частым явлением бывает, что 3G сигнал на крыше дома есть, а в помещение из-за сложности распространения радиоволн вовсе не попадает.

Рассмотрим обычный случай - на крыше дома от базовой станции приходит сигнал с уровнем -97 дБм. Если мы поставим антенну AL-800/2700-8 с коэффициентом усиления 8 дБ, то на вход модема придет сигнал с уровнем - 92 дБм, т.к. на кабеле и переходнике к модему теряется приблизительно 3 дБ (потери в кабеле зависят от его длины и от маркировки). Исходя из нашего предыдущего опыта по замеру скорости интернета, получаем скорость 1.8 Мбит/сек. А если мы поставим в качестве антенны AP-1900/2700-17 с коэффициентом усиления 17 дБ!, то на вход модема придется сигнал -83 дБм, что соответствует скорости 7.7 Мбит/сек.

Если на крыше дома сигнал от -85 дБ и выше, то достаточно будет антенны с КУ = 7 -10 дБ. При этом надо помнить, что при плохих погодных условиях надо иметь некий запас.

Еще раз напоминаю, что в каждом случае скорость будет индивидуальная. И может оказаться гораздо меньшей, из-за низкой пропускной способности базовой станции сотового оператора.

Активный усилитель 3G сигнала

Теперь рассмотрим применение активного усилителя ТАУ-2000. Схема подключения выглядит так:

Узнайте о децибелах и их вариациях в контексте радиочастотного проектирования и тестирования.

Радиотехника, как и все научные дисциплины и подразделы, включает в себя довольно много специализированной терминологии. Одним из наиболее важных слов, которые вам понадобятся при работе в мире радиочастот, является «дБ» (и некоторые его варианты). Если вы глубоко закрепились в проектировании радиочастотных систем, то можете обнаружить, что слово «дБ» становится вам таким же знакомым, как и ваше собственное имя.

Как вы, наверное, знаете, дБ означает децибел. Это логарифмическая единица, которая обеспечивает удобный способ работы с отношениями, такими как отношение между амплитудами входного и выходного сигналов.

Мы не будем описывать общую информацию о децибелах, потому что она уже доступна на этой странице учебника «Основы электроники и схемотехники ». Вместо этого мы сосредоточимся на практических аспектах децибелов в конкретном контексте радиочастотных систем.

Относительный, не абсолютный

Легко забыть, что дБ является относительной единицей. Вы не можете сказать: «Выходная мощность составляет 10 дБ».

Напряжение является абсолютной величиной, потому что мы всегда говорим о разности потенциалов между двумя точками; обычно мы имеем в виду потенциал одного узла относительно узла земли 0 В. Ток также является абсолютной величиной, поскольку единица измерения (ампер) включает в себя определенное количество заряда в течение определенного количества времени. Децибел, напротив, это единица измерения, которая включает в себя логарифм отношения между двумя числами. Ярким примером является коэффициент усиления усилителя: если мощность входного сигнала равна 1 Вт, а мощность выходного сигнала равна 5 Вт, мы имеем коэффициент 5:

Таким образом, этот усилитель обеспечивает усиление по мощности 7 дБ, то есть соотношение между мощностью выходного сигнала и мощностью входного сигнала может быть выражено как 7 дБ.

Почему дБ?

Конечно, можно было бы проектировать и тестировать радиочастотные системы без использования дБ, но на практике дБ используются везде. Одно из преимуществ заключается в том, что шкала дБ позволяет выражать очень большие отношения без использования очень больших чисел: усиление по мощности в 1 000 000 раз составляет всего 60 дБ. Кроме того, при использовании дБ легко вычисляется общий коэффициент усиления или потерь в цепи прохождения сигнала, поскольку отдельные значения в дБ просто складываются (тогда как, если бы мы работали с обычными отношениями, нам потребовалось бы умножение).

Мы установили, что дБ является отношением и, следовательно, не может описывать абсолютные значения мощности и амплитуды сигнала. Однако было бы неудобно постоянно переключаться между значениями в дБ и не в дБ, и, возможно, именно поэтому радиоинженеры ввели единицу измерения дБм (dBm).

Мы можем избежать проблемы «только отношение», просто создав новую единицу измерения, которая всегда будет содержать опорное значение. В случае дБм опорное значение равно 1 мВт. Таким образом, если у нас есть сигнал 5 мВт, и мы хотим оставаться в области дБ, мы можем выразить мощность этого сигнала как 7дБм:

Вы определенно хотите ознакомиться с концепцией дБм. Это стандартная единица, используемая в реальной разработке радиочастотных систем, и она очень удобна, когда вы, например, вычисляете энергетический баланс линии связи, поскольку усиления и потери, выраженные в дБ, могут просто складываться и вычитаться из выходной мощности, выраженной в дБм.

Существует также единица дБВт (dBW); в качестве опорного значения она использует 1 Вт вместо 1 мВт. В настоящее время большинство радиоинженеров работает с относительно маломощными системами, и это, вероятно, объясняет, почему дБм встречается чаще.

Больше вариаций дБ

Две других единицы измерения, основанных на дБ, - это дБн (dBc) и дБи (dBi).

Вместо фиксированного значения, такого как 1 мВт, дБн (dBc) использует в качестве опорного сигнала уровень несущей сигнала. Например, фазовый шум (смотрите второй раздел данной главы) выражается в единицах дБн/Гц (dBc/Hz); первая часть этой единицы измерения указывает, что мощность фазового шума на определенной частоте измеряется относительно мощности несущей (в этом случае «несущая» относится к мощности сигнала на номинальной частоте).

Идеализированная точечная антенна принимает определенное количество энергии от схемы передатчика и равномерно излучает ее во всех направлениях. Считается, что эти «изотропные» антенны имеют нулевой коэффициент усиления и нулевые потери.

Однако, другие антенны могут быть сконструированы таким образом, чтобы концентрировать излучаемую энергию в определенных направлениях, и в этом смысле антенна может иметь «усиление». Антенна на самом деле не добавляет мощности к сигналу, но эффективно увеличивает переданную мощность путем концентрации электромагнитного излучения в соответствии с направлением системы связи (очевидно, что более практично, когда разработчик антенны знает пространственную взаимосвязь между передатчиком и приемником).

Единица измерения дБи (dBi) позволяет производителям антенн указывать «коэффициент усиления», который использует популярную шкалу дБ. Как всегда, когда мы работаем с дБ, нам необходимо отношение, а в случае с дБи (dBi) коэффициент усиления антенны выражается через опорное усиление изотропной антенны.

Некоторые антенны (например, те, которые сопровождаются параболическим зеркалом, «тарелкой») имеют значительный коэффициент усиления, и поэтому они могут внести нетривиальный вклад в расстояние и производительность радиочастотной системы.

Резюме

  • Шкала дБ представляет собой метод выражения отношений между двумя величинами. Она удобна и широко используется в контексте радиочастотного проектирования и тестирования.
  • Хотя значения в дБ по своей природе относительны, в шкале дБ могут быть выражены и абсолютные величины с помощью единиц измерения, которые включают в себя стандартизированное опорное значение.
  • Наиболее распространенной абсолютной единицей измерения в дБ является дБм (dBm), который выражает мощность сигнала в дБ относительно 1 мВт.
  • Единица измерения дБн (dBc) выражает мощность по отношению к мощности сигнала, связанного с измерением (с несущей).
  • Единица измерения дБи (dBi) выражает коэффициент усиления антенны относительно отклика идеализированной точечной (изотропной) антенны.

Соответствует ли шум в вашей квартире установленным нормам? Насколько сильно шумит вентилятор вашего компьютера? Хотите определить победителя по громкости аплодисментов в зале? На все эти вопросы даст конкретный ответ приложение Шумомер, установленное на вашем смартфоне.

Что может программа Шумомер

Приложение Шумомер можно скачать из магазина приложений Google Play. Оно может:

  • Измерять шум в квартире, на улице, на рабочем месте.
  • Давать оценку его громкости в сравнении с обычными условиями для городской квартиры, тихой улицы и так далее.
  • Анализировать спектр звука, чтобы вычислить прибор, вносящий наибольшую долю в громкость общего шума.

Как работает Шумомер

Сразу после запуска программа начинает определять уровень звука в Дб. Рассчитываются максимальное значение и средний уровень. На рисунке внизу шум в комнате при открытом окне: не более 60 Дб, что соответствует Тихой улице.

Стоит закрыть окно, и уровень звука существенно снижается до нормы в квартире.

Громкий шум опасен для здоровья. Он нарушает сон, увеличивает нервозность. Даже в том случае, если человек уже привык, практически не замечает громкого монотонного звука.

Чтобы перейти в режим Анализа спектра, поверните телефон горизонтально. Анализ позволяет выяснить частоты, на которых звук наиболее сильный. На диаграмме по оси X отложена частота от 0 Гц до 21,6 кГц (граница слышимого человеком диапазона). По оси Y - громкость звука. Тапнув на пик, можно определить частоту, которая вносит наибольший вклад в общую какофонию.

Можно использовать логарифмическую или линейную шкалу.

Наиболее вредный низкочастотный спектр. Человеческое ухо его не слышит, но на здоровье и настроение он влияет сильно. Так громкий звук на частоте от 5 до 7 Гц может вызывать приступы страха, дискомфорт. Выспаться, понятное дело, тоже не получится.