Водопоглощение керамического кирпича. Водопоглощение кирпича – важнейшая характеристика для выбора Водопоглощение облицовочного кирпича

Любой строительный материал обладает определенными свойствами, делающими его пригодным или непригодным для использования в той или иной области. Например, кирпич делится на строительный и облицовочный не только по внешнему виду, но и по характеристикам. Главными из них являются прочность, морозостойкость и водопоглощение кирпича.

Из рядового полнотелого камня возводятся несущие конструкции, способные выдержать нагрузку от собственного веса, веса кровли и перекрытий. А облицовочный не только украшает, но и утепляет здание. Оба вида обладают разными функциями и по-разному подвергаются воздействию окружающей среды, поэтому от них требуются разные физические свойства.

Основные понятия и определения

Взаимосвязь основных параметров

Упомянутые выше характеристики тесно связаны между собой и зависят друг от друга. Чтобы понять это, необходимо дать определение водопоглощению.

Определение. Водопоглощением называют способность материала впитывать в себя воду и удерживать её. Оно выражается в процентном отношении к собственному объему материала. Если говорить о кирпиче, то его водопоглощение показывает, какое количество воды он может вобрать в себя при полном погружении.

Понятно, что чем больше объем пустот в кирпиче (т.е. чем выше его пористость), тем больше воды он впитает. В то же время пористость влияет на прочность материала, его способность выдерживать определенную нагрузку. А также и на морозостойкость, показывающую, сколько циклов замерзания и оттаивания он способен выдержать без снижения своих эксплуатационных свойств.

Нормы и требования

Казалось бы, что для улучшения этих показателей достаточно максимально увеличить плотность изделия, чтобы ограничить впитывание в него влаги.

Однако этого не делают по двум причинам:

  1. Если водопоглощение керамического кирпича будет очень низким, кладка из него окажется непрочной, так как не будет обеспечена нормальная связь с раствором.

  1. Отсутствие пор снижает теплоизоляционные свойства материала, делает его непригодным для тех условий эксплуатации, которые существуют в нашем холодном климате.

Поэтому существуют установленные ГОСТом нормы, согласно которым этот показатель должен быть не ниже 6%. Верхний же его предел зависит от и тех условий, в которых он будет работать.

  • Рядовой – 12-14%;
  • Лицевой – 8-10%;
  • Кирпич, используемый во внутренних рядах кладки и для строительства перегородок, может обладать водопоглощением до 16%.

Такой разброс объясняется тем, что внутренние ряды кладки не испытывают непосредственного воздействия осадков и низких температур, в то время как наружные полностью принимают их на себя. Поэтому водопоглощение лицевого кирпича должно быть как можно ниже. А для снижения теплопроводности в нем делаются специальные технологические пустоты.

Для справки. Наилучшими показателями отличается клинкерный лицевой кирпич. В нем практически отсутствуют посторонние включения и поры, благодаря чему его влагостойкость, морозостойкость, прочность и долговечность очень высоки. Но и цена его выше, чем у обычного.

Определение влагопоглощения

Для определения этого показателя используется методика, регламентированная ГОСТ 7025-91 «Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости».

Общие требования методики

Исследование проводится в лаборатории с соблюдением следующих требований:

  1. Температура воздуха в помещении должна быть в пределах 15-25 градусов;
  2. Испытаниям подвергаются целые изделия или половинки;
  3. Образцы должны быть высушены до постоянной массы с установленной погрешностью взвешивания. Сушка проводится при температуре 1055 градусов в электрошкафу;

  1. Силикатные изделия подвергаются испытаниям не раньше, чем через 24 часа после автоклавной обработки.

Проведение испытания

Для исследования берется не менее трех образцов из одной партии. Этого требует инструкция для определения среднего арифметического значения влагопоглощения.

После высушивания их взвешивают и погружают в сосуд с водой с температурой 15-25 градусов, поместив на решетки с зазорами не менее 2 см. Уровень воды должен быть выше верхнего образца на 2-10 см.

Обратите внимание. Силикатный кирпич перед испытанием не высушивается.

По истечении 48 часов изделия вынимают из воды и сразу же снова взвешивают, включая в массу кирпича и массу вытекшей на чашку весов воды.

Полученные результаты обрабатывают, вычисляя водопоглощение по следующей формуле:

m1 – масса насыщенного водой изделия;

m – масса высушенного изделия.

То есть, относят массу впитавшейся воды к массе самого образца и выражают получившееся значение в процентах.

Пример. Если высушенный кирпич весил 4000 г, а после проведенного испытания стал весить 4360 г, то его водопоглощение равно (4360 – 4000)/4000 * 100 = 9%.

Несмотря на то, что для испытаний требуется специальное оборудование, его можно провести и своими руками, но результаты будут весьма приближенными к действительным. Однако в случае применения кирпича, характеристики которого вам неизвестны, они будут очень информативны.

Заключение

Степень водопоглощения материала – важнейшая характеристика, позволяющая определить сферу его применения. Например, силикатный кирпич обладает высокой способностью впитывать в себя воду, и именно поэтому он не используется при возведении фундаментов, цокольных этажей и стен влажных помещений (читайте также статью ). В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

архитектурные возможности кирпича

Кирпич - это искусственный камень правильной формы, выполненный из минеральным материалов, основным назначением которого является использование в качестве строительного материала, для устройства.

С древних времен из кирпича выкладывали сложные конструкции, Здания, сооружения из кирпича выполняли еще со времен древнего Египта и Рима. Обожжённый кирпич на Руси стал использоваться с конца XV века, о чем свидетельствуют прекрасно сохранившиеся до нашего времени стены храмов прошлых веков, других жилых и не жилых исторически ценных зданий и сооружений, которых великое множество во всем Мире.

Из кирпича создавали и до настоящего времени создают настоящие произведения искусства, со своим характером и уникальностью. Прекрасным примером в наше время являются неповторимые города Европы, культурные столицы большинства государств, которые не перестают удивлять работой архитекторов.

С развитием строительной сферы, технологии и качество кирпича как строительного материала, получило достаточно изменений, свойств высокого качества, надежности и долговечности. Потому спрос на этот материал всегда высок и он всегда востребован.

Существует несколько видов кирпича и классификация по разным критериям, каждый из которых обладает своими свойствами, достоинствами и недостатками, каждый из которых мы рассмотрим в этой рубрике. Но также имеются и общие характеристики, присущие каждому виду кирпича как изделию, приведем их ниже.

Основные свойства и характеристики кирпича:

1.Размер кирпича

2.Марка по показателю прочности

3.Теплопроводность кирпича

4. Морозостойкость кирпича

5. Водопоглощение кирпича

Размер кирпича

в странах СНГ определяются как:

– стандартный кирпич (одинарный) 250х120х65 мм

– полуторный кирпич 250х120х88 мм

– двойной кирпич 250х120х138 мм

в Европейских странах свой подход к размеру кирпича:

– кирпич евро 250х88х65 мм

– одинарный 288х138х65 мм

Кроме того, в зависимости от проекта и архитектурных решений здания, кирпич выполняют разного размера и формы, цвета.

фасад кирпичного дома

Марка кирпича по показателю прочности:

Прочность кирпича – это его способность, без разрушения, выдержать механическую нагрузку на сжатие, растяжение и изгиб. Это одна из основных характеристик, обозначается буквой М и следующей за ней цифрой: М50, М75, М100, М125, М150, М175, М200, М250, М300, которая определяет сколько килограммов на 1 см² может выдержать изделие.

Теплопроводность кирпича:

Коэффициент теплопроводности кирпича – это соотношение количества тепловой энергии, теряемого за 1 метр толщины конструкции при разнице температур в 1 градус между наружной и внутренней поверхностью.

Чем ниже коэффициент, тем выше теплопроводность, в условиях низких температур для строительства жилых сооружений, более подходит кирпич с низкой теплопроводностью, если одной из задач является сохранение тепла в помещении.

– Полнотелый кирпич – имеет теплопроводность 0,5-0,6 Вт/м °С. И характеризуется довольно высокой теплопроводностью.

– Пустотелый кирпич – имеет коэффициент теплопроводности 0,32-0,39 Вт/м °С., поскольку воздух в пустотах имеет более низкую теплопроводность и есть возможность строить стены более тонкими в сравнении с использованием полнотелого кирпича.

фасад из красного кирпича

Морозостойкость кирпича:

Это параметр изделия, который определяет выдержку материала на чередующееся заморозку и оттаивание, до появления существенных изменений в структуре материала. Обозначается буквой F и следующим за ней числом, которое показывает количество циклов заморозки и оттаивания данного вида кирпича. Например – F15, F25, F35, F50. Чем больше число, следующее за буквой F, тем более устойчив кирпич к перепадам температур. Рекомендуемая марка по морозостойкости не ниже F35. Данный показатель определяется при создании экстремальных условий для изделия, которые возникают крайне редко или совсем не происходят с кирпичом.

Для определения морозостойкости, кирпич полностью насыщают водой. При замораживании, при температуре минус 15-20°С часть воды замерзает в порах с образованием льда. В структуре кирпича возникает внутреннее давление, связанное с переходом воды из жидкого в твердое состояние с увеличением объема примерно на 9%, что и приводит при многократном повторении к расшатыванию структуры с последующим ее разрушением.

Чем менее пористей структура кирпича тем тон более морозостойкий, соответственно самый морозостойкий кирпич это полнотелый, выдерживает больше количество циклов.

Водопоглощение кирпича:

Водопоглощение кирпича – величина, которая в процентах показывает какое количество влаги данный вид кирпича способен впитать и удержать. Водопоглощение определяется следующим образом: кирпич выдерживают в печи при температуре 105-110 °С определённое время, остужают и производят его взвешивание. Затем, его помещают в воду на определённый промежуток времени и вновь подвергают взвешиванию. Разница между этими двумя взвешиваниями в процентном соотношении и есть водопоглощение кирпича.

Имеется взаимозависимость таких показателей как морозостойкость и водопоглощение. Чем выше водопоглощение, тем ниже морозостойкость, поскольку больше воды замерзает в структуре кирпича и соответственно сильнее давление оказывается на изделие изнутри.

Кирпич с водопоглощением выше 9% имеет низкую морозостойкость. Рекомендованным считается водопоглощение 6-12%.

Качество кирпича - определяющий параметр при выборе этого материала. От качества выбранного кирпича напрямую зависит долговечность, тепло, экологичность, внешний вид будущего дома. Документом, подтверждающим качество изделия является сертификат соответствия. Для подтверждения соответствия партии кирпича стандартам качества, прописанным в ГОСТ 530-2012, на каждом заводе-изготовителе проводятся испытания качества готовой продукции.
Методы испытаний при входном контроле качества сырья и материалов указывают в технологической документации на изготовление изделий с учетом требований нормативных документов на это сырье и материалы.
Методы испытаний при проведении производственного операционного контроля устанавливают в технологической документации на изготовление изделий.

Определение геометрических размеров

Размеры изделий, толщину наружных стенок, диаметр цилиндрических пустот, размеры квадратных и ширину щелевидных пустот, длину посечек, длину отбитостей ребер, радиус закругления смежных граней и глубину фаски на ребрах измеряют металлической линейкой по ГОСТ 427 или штангенциркулем по ГОСТ 166. Погрешность измерения - ±1 мм:

  • Длину, ширину и толщину каждого изделия измеряют по краям (на расстоянии 15 мм от угла) и в середине ребер противоположных граней. За результат измерения принимают среднеарифметическое значение трех измерений.
  • Толщину наружных стенок измеряют минимум в трех местах - посередине каждой грани изделия. За результат измерения принимают наименьшее значение.
  • Размеры пустот измеряют внутри пустот не менее чем на трех пустотах. За результат измерения принимают наибольшее значение.
  • Ширину раскрытия трещин измеряют при помощи измерительной лупы по ГОСТ 25706, после чего изделие проверяют на соответствие требованиям. Точность измерения 0,1 мм.
  • Глубину отбитости углов и ребер измеряют при помощи угольника по ГОСТ 3749 и линейки по ГОСТ 427 по перпендикуляру от вершины угла или ребра, образованного угольником, до поврежденной поверхности. Погрешность измерения - ±1 мм.

Определение правильности формы

  • Отклонение от перпендикулярности граней определяют, прикладывая угольник к смежным граням изделия и измеряя металлической линейкой по ГОСТ 427 наибольший зазор между угольником и гранью. Погрешность измерения - ±1 мм.
    За результат измерений принимают наибольший из всех полученных результатов измерений.
  • Отклонение от плоскостности изделия определяют, прикладывая одну сторону металлического угольника к ребру изделия, а другую - вдоль каждой диагонали грани и измеряя щупом, калиброванным в установленном порядке, или металлической линейкой по ГОСТ 427 наибольший зазор между поверхностью и ребром угольника. Погрешность измерения - ±1 мм.
    За результат измерения принимают наибольший из всех полученных результатов измерений.

Определение наличия известковых включений

Наличие известковых включений определяют после пропаривания изделий в сосуде.

Образцы, не подвергавшиеся ранее воздействию влаги, укладывают на решетку, помещенную в сосуд с крышкой. Налитую под решетку воду нагревают до кипения. Пропаривание продолжают в течение 1 ч. Затем образцы охлаждают в закрытом сосуде в течение 4 ч, после чего их проверяют на соответствие требованиям.

Определение пустотности изделий

Пустотность изделий определяют как отношение объема песка, заполняющего пустоты изделия, к объему изделия.

Пустоты изделия, лежащего на листе бумаги на ровной поверхности отверстиями вверх, заполняют сухим кварцевым песком фракции 0,5-1,0 мм. Изделие убирают, песок пересыпают в стеклянный мерный цилиндр и фиксируют его объем. Пустотность изделия Р, %, вычисляют по формуле:

где V пес - объем песка, мм 3 ;

l - длина изделия, мм;

d - ширина изделия, мм;

h - толщина изделия, мм.

За результат измерения принимают среднеарифметическое значение трех параллельных определений и округляют до 1 %.

Определение скорости начальной абсорбции воды

Подготовка образцов

Образцом является целое изделие, с поверхности которого удалены пыль и излишки материала. Образцы высушивают до постоянной массы при температуре (105±5)°С и охлаждают до комнатной температуры.

Оборудование

  • Емкость для воды площадью основания большей, чем постель изделия, и высотой не менее 20 мм, с решеткой или ребрами на дне для создания расстояния между дном и поверхностью изделия. Уровень воды в емкости должен поддерживаться постоянным.
  • Секундомер с ценой деления 1 сек.
  • Сушильный шкаф с автоматическим поддержанием температуры (105±5)°С.
  • Весы, обеспечивающие точность измерения не менее 0,1% массы сухого образца.

Проведение испытания

Образец взвешивают, измеряют длину и ширину погружаемой в емкость с водой опорной поверхности образца и вычисляют ее площадь. Изделие погружают опорной поверхностью в емкость с водой с температурой (20±5) °С на глубину (5±1) мм и выдерживают в течение (60±2) с. Затем испытуемый образец извлекают из воды, удаляют лишнюю воду и взвешивают.

Обработка результатов

Скорость начальной абсорбции рассчитывают для каждого образца с точностью до 0,1 кг/(м 2 ·мин) по формуле:

где С абс - скорость начальной абсорбции воды, кг/(м 2 ·мин.);

m 1 - масса сухого образца, г;

m 2 - масса образца после погружения, г;

S - площадь погружаемой поверхности, мм 2 ;

t - время выдерживания образца в воде (постоянная величина t = 1 мин).

Скорость начальной абсорбции воды вычисляют как среднеарифметическое результатов пяти параллельных определений.

Определение наличия высолов

Для определения наличия высолов половинку изделия погружают отбитым торцом в емкость, заполненную дистиллированной водой, на глубину 1 - 2 см и выдерживают в течение 7 сут (уровень воды в сосуде должен поддерживаться постоянным). По истечении 7 сут образцы высушивают в сушильном шкафу при температуре (105±5) ºС до постоянной массы, а затем сравнивают со второй частью образца, не подвергавшейся испытанию, и проверяют на соответствие.

Предел прочности при изгибе и сжатии

  • Предел прочности при изгибе кирпича определяют в соответствии с ГОСТ 8462.
  • Предел прочности при сжатии изделий определяют по ГОСТ 8462 со следующими дополнениями.

Подготовка образцов

Образцы испытывают в воздушно-сухом состоянии. Испытываемый образец состоит: из двух целых кирпичей , уложенных постелями друг на друга, или из одного камня.

Подготовку опорных поверхностей изделий для приемосдаточных испытаний производят шлифованием, для образцов из клинкерного кирпича - применяют выравнивание цементным раствором; при арбитражных испытаниях кирпича и камня применяют шлифование, клинкерного кирпича - выравнивание цементным раствором, приготовленным по 2.6 ГОСТ 8462. Допускается при проведении приемосдаточных испытаний применять иные способы выравнивания опорных поверхностей образцов при условии наличия корреляционной связи между результатами, полученными разными способами, а также доступности проверки информации, являющейся основанием для такой связи.

Отклонение от плоскостности опорных поверхностей испытываемых образцов не должно превышать 0,1 мм на каждые 100 мм длины. Непараллельность опорных поверхностей испытуемых образцов (разность значений высоты, измеренная по четырем вертикальным ребрам) должна быть не более 2 мм.

Испытуемый образец измеряют по средним линиям опорных поверхностей с погрешностью до ±1 мм.

На боковые поверхности образца наносят осевые линии.

Проведение испытания

Образец устанавливают в центре машины для испытаний на сжатие, совмещая геометрические оси образца и плиты, и прижимают верхней плитой машины. При испытаниях нагрузка на образец должна возрастать следующим образом: до достижения примерно половины ожидаемого значения разрушающей нагрузки - произвольно, затем поддерживают такую скорость нагружения, чтобы разрушение образца произошло не ранее чем через 1 мин. Значение разрушающей нагрузки регистрируют.

Значение предела прочности при сжатии изделий R сж, МПа (кгс/см 2) вычисляют по формуле:

R сж = P / F , (3)

где Р - наибольшая нагрузка, установленная при испытании образца, Н (кгс);

F - площадь поперечного сечения образца (без вычета площади пустот); вычисляют как среднеарифметическое значение площадей верхней и нижней поверхностей, мм 2 (см 2).

Значение предела прочности при сжатии образцов вычисляют с точностью до 0,1 МПа (1 кгс) как среднеарифметическое значение результатов испытаний установленного числа образцов.

Плотность, водопоглощение, морозо- и кислотостойкость кирпича

Среднюю плотность, водопоглощение и морозостойкость (метод объемного замораживания) изделий определяют в соответствии с ГОСТ 7025.

Результат определения средней плотности изделий округляют до 10 кг/м 3 .

  • Водопоглощение определяют при насыщении образцов водой температурой (20±5) ºС при атмосферном давлении.
  • Морозостойкость определяют методом объемного замораживания. Оценку степени повреждений всех образцов проводят через каждые пять циклов замораживания и оттаивания.
  • Кислотостойкость клинкерного кирпича определяют в соответствии с ГОСТ 473.1.
  • Удельную эффективную активность естественных радионуклидов Аэфф определяют по ГОСТ 30108.

Коэффициент теплопроводности кладок

Коэффициент теплопроводности кладок определяют по ГОСТ 26254 со следующими дополнениями.

Коэффициент теплопроводности определяют экспериментально на фрагменте кладки, который с учетом растворных швов выполняют толщиной из одного тычкового и одного ложкового рядов кирпичей или камней. Кладку из укрупненных камней выполняют толщиной в один камень. Длина и высота кладки должны быть не менее 1,5 м (см. рисунок 2). Кладку выполняют на сложном растворе марки 50, средней плотностью 1800 кг/м 3 , состава 1,0:0,9:8,0 (цемент:известь:песок) по объему, на портландцементе марки 400 с осадкой конуса для полнотелых изделий 12-13 см, для пустотелых - 9 см. Допускается выполнение фрагмента кладки, отличной от указанной выше, с применением других растворов, состав которых указывают в протоколе испытаний.

δ - толщина кладки; 1 - кладка из одинарного кирпича; 2 -; кладка из утолщенного кирпича; 3 - кладка из камня

Рисунок 2 - Фрагмент кладки для определения коэффициента теплопроводности

Фрагмент кладки из изделий со сквозными пустотами следует выполнять по технологии, исключающей заполнение пустот кладочным раствором или с заполнением пустот раствором, о чем делается запись в протоколе испытаний. Кладку выполняют в проеме климатической камеры с устройством по контуру теплоизоляции из плитного утеплителя; термическое сопротивление теплоизоляции должно быть не менее 1,0 м 2 ·°С/Вт. После изготовления фрагмента кладки его наружную и внутреннюю поверхности затирают штукатурным раствором толщиной не более 5 мм и плотностью, соответствующей плотности испытуемых изделий, но не более 1400 кг/м 3 и не менее 800 кг/м 3 .

Фрагмент кладки испытывают в два этапа:

  • этап 1 - кладку выдерживают и подсушивают в течение не менее двух недель до влажности не более 6 %;
  • этап 2 - проводят дополнительную сушку кладки до влажности 1 % - 3 %.

Влажность изделий в кладке определяют приборами неразрушающего контроля. Испытания в камере проводят при перепаде температур между внутренней и наружной поверхностями кладки Δt = (tв - tн)≥ 40 °С, температуре в теплой зоне камеры tв = 18 °С - 20 °С, относительной влажности воздуха (40±5) %. Допускается сокращение времени выдержки кладки при условии обдува наружной поверхности и обогрева внутренней поверхности фрагмента трубчатыми электронагревателями (ТЭНами), софитами и др. до температуры 35 °С - 40 °С.

Перед испытанием на наружной и внутренней поверхностях кладки в центральной зоне устанавливают не менее пяти термопар по действующему нормативному документу. Дополнительно на внутренней поверхности кладки устанавливают тепломеры по действующему нормативному документу. Термопары и тепломеры устанавливают так, чтобы они охватывали зоны поверхности ложкового и тычкового рядов кладки, а также горизонтального и вертикального растворных швов. Теплотехнические параметры фиксируют после наступления стационарного теплового состояния кладки не ранее чем через 72 ч после включения климатической камеры. Измерение параметров проводят не менее трех раз с интервалом 2-3 ч.

Для каждого тепломера и термопары определяют среднеарифметическое значение показаний за период наблюдений q i и t i . По результатам испытаний вычисляют средневзвешенные значения температуры наружной и внутренней поверхностей кладки t н ср, t в ср, с учетом площади ложкового и тычкового измеряемых участков, а также вертикального и горизонтального участков растворных швов по формуле

t н(в) ср = (Σt i F i)/(Σt i F i), (4)

где t i - температура поверхности в точке i , °С;

F i - площадь i -го участка, м 2 .

По результатам испытаний определяют термическое сопротивление кладки R к пр, м 2 ·°С/Вт, с учетом фактической влажности во время испытаний по формуле

R к пр = Δt /q ср, (5)

где Δt = t в ср - t н ср, °С;

q ср - среднее значение плотности теплового потока через испытываемый фрагмент кладки, Вт/м 2 .

По значению R к пр вычисляют эквивалентный коэффициент теплопроводности кладки λ экв (ω), Вт/(м·°С), по формуле

λ экв (ω) = δ/R к пр, (6)

где δ - толщина кладки, м.

Строят график зависимости эквивалентного коэффициента теплопроводности от влажности кладки (см. рисунок 3) и определяют изменение значения λ экв на один процент влажности Δλ экв, Вт/(м·°С), по формуле

Δλ экв = (λ экв1 - λ экв2)/(ω 1 - ω 2). (7)

Рисунок 3 - График зависимости эквивалентного коэффициента теплопроводности от влажности кладки

Коэффициент теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисляют по формулам:

λ 0 II = λ экв2 - ω 2 · Δλ экв (8)

или λ 0 I = λ экв1 - ω 1 · Δλ экв. (9)

За результат испытания принимают среднеарифметическое значение коэффициента теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисленное по формуле

λ 0 = (λ 0 I + λ 0 II)/2. (10)

Водопоглощение кирпича – является одной из важнейших показателей на гигроскопичность в процентном соотношении.

Чем выше гидроскопичность кирпича, тем ниже его прочность.

Этот показатель демонстрирует пористость изделия, которая зависит от его состава.

Ведь гигроскопичность кирпича достаточно внушительно сказывается на морозостойкости материала. По этой причине при насыщении влагой материала прочность его значительно уменьшится в сравнении с сухим материалом. Для этого необходимо учитывать этот важный показатель при выборе кирпича для возведения загородной усадьбы.

Для того чтобы узнать гигроскопичность кирпича, материал кладут в печь на несколько часов при температуре 110-120 ºС. После нагревания кирпич охлаждают при естественной температуре, далее производят взвешивание. Потом его погружают в воду на 2 суток и снова взвешивают. По разнице в весе определяется какое количество впиталось в материал в процентном соотношении. Для строительного кирпича увеличение массы не должно быть превышено более 5%, а для отделочного блока не выше 14%.

Строительный кирпич подразделяют 3 основных вида

Строительный кирпич делится на три разновидности: бетонный блок, силикатный и керамический кирпич.

  • бетонный блок;
  • силикатный;
  • керамический кирпич.

Изготовление бетонного кирпича происходит путем залива в специально подготовленные формы цементным раствором. При этом в строительстве не пользуется большим спросом из-за большого веса, слабой звукоизоляции, высокой теплопроводностью и дороговизной. Из положительных черт бетонного кирпича можно отметить низкое водопоглощение около 5%, в некоторых видах 3%, отличную прочность для кладки несущих стен и устойчивость к быстро меняющимся атмосферным условиям.

Силикатный кирпич на 89,2% состоит из песка, остальной процент составляет известь и связующие добавки.

В состав силикатного блока входит 89,2% песка, остальной процент составляет известь и связующие добавки. В некоторых случаях в состав заготовки добавляют красящий пигмент для придания блоку необходимого оттенка. Водопоглощение у силикатов иногда достигает 15%. По этой причине не рекомендуется применение в местах с повышенной влажностью. Таких как цокольные помещения, кладка фундаментов, бань и т.д. Силикатный блок имеет хорошую звукоизоляцию, приемлемую цену и достаточно прочен для кладки несущих стен. Недостатком является высокая теплопроводность в сравнении с керамическим кирпичом.

Тускло-горчичный цвет керамического кирпича свидетельствует о недообжиге, а местами черный наоборот – о переобжиге.

Керамический блок изготавливается из смеси глин и путем обжига в туннельной печи при температуре 1000ºС. Обожженная по требуемым стандартам керамическая заготовка имеет красно-коричневый цвет и при незначительном ударе издает звонкий звук. Также брак можно отличить и по цвету керамической заготовки. Тускло-горчичный цвет показывает о недообжиге, а местами черный о переобжиге. По стандарту красного керамического блока минимальное водопоглощение должно составлять 6%, но может достигнуть и 14%. Оптимальное же водопоглощение составляет 8%. У керамического блока структура слоистая. Водопоглощение находится на среднем показателе. Из-за впитанной влаги керамического кирпича между слоями и не возможном быстром высвобождении воды в период значительных перепадов температуры и неблагоприятных погодных условий керамический кирпич начинает разрушаться. В начале появляются мелкие трещинки, которые в последствии перерастают в сквозные трещины. Вследствие чего керамический кирпич утрачивает свои свойства.

Водопоглощением называют склонность к впитыванию и хранению влаги. Для его обозначения используются соотношение объема впитанной влаги и материала.

Данная величина возрастает по мере увеличения пор или пустот в структуре кирпича. Также важно понимать, что наличие внутренних пор негативно сказывается на прочности изделия и его стойкости к перенесению нагрузок.

При снижении температуры ниже нуля находящаяся внутри вода может вызывать его разрушение, так как при замерзании жидкость увеличивается в объеме. Это ставит прочность и морозостойкость в прямую зависимость от степени поглощения воды: чем она выше, тем срок службы построенной стены меньше.

Полезная информация:

Немного о нормах водопоглощения

Для повышения прочности и долговечности важно свести уровень водопоглощения материала до минимума. На практике сделать это не так просто, чему виной объективные причины:

Если уменьшить объем впитываемой воды, это может сказаться на прочности кирпичной кладки, из-за снижения адгезии с кладочным раствором.
Внутренние пустоты дают изделиям дополнительные утепляющие и звукоизоляционные свойства, что очень ценится в местностях с суровыми климатическими условиями или повышенным шумом. Соответственно, при снижении пористости происходит утеря указанных качеств. По этой причине специальные нормы устанавливают нижнюю границу для водопоглощения керамического кирпича на уровне 6% . Верхняя черта определяется предназначением каждой конкретной разновидности материала.

Виды кирпича по водопоглащению

ГОСТ определяет для разных типов кирпича различные пределы максимального водопоглощения. Также этот показатель зависит от условий эксплуатации.

  • Для рядового кирпича данный показатель устанавливается на уровне 12-14%
  • Водопоглощение керамического кирпича для лицевой кладки – от 8 до 10% .
  • Для внутренних работ (отделка, перегородки) кирпич имеет граничную норму водопоглащения 16% .

Такая существенная разница для разных видов объясняется различными условиями, в которых они используются. К примеру, на внутреннюю кладку не воздействуют атмосферные осадки, а температура обычно находится в комфортных пределах.

Материал, применяемый в условиях улицы, ощущает на себе все разрушительные погодные воздействия. Особенно это касается регионов с суровыми климатическими условиями, для которых разрабатывается лицевой керамический кирпич с максимально низким коэффициентом поглощения влаги. Для того, чтобы при этом не пострадали его теплоизоляционные характеристики, внутри предусматриваются специальные технологические пустоты.