Как научится читать электронные схемы. Для чего нужны электрические схемы и каких типов они бывают Принцип работы электрической схемы

Существуют несколько различных типов электрических схем и любой грамотный электрик должен обязательно разбираться в том для чего они нужны, чем они друг от друга отличаются, какую информацию содержат, какие условные обозначения используются на разных схемах, как правильно их прочитать.

Очень часто люди путают термины "виды" и "типы" схем. По видам схемы подразделяют на электрические, пневматические, гидравлические и комбинированные. Комбинированные схемы наиболее распространены в проектах автоматизации различных технологических процессов, когда в проектах вместе с различными электрическими двигателями, аппаратами, датчиками одновременно используются элементы пневмоавтоматики и гидравлики. Такие схемы называют комбинированные электропневматические, электропневмогидравлические или электрогидравлические.

По типам все электрические схемы делят на функциональные, структурные, принципиальные, соединений и подключения (монтажные) и расположения. Существуют специальные типы схем, например схемы внешних электрических и трубных проводок, схемы прокладки кабелей. По ним выполняют монтаж и подключение проводок к электрооборудованию и средствам автоматизации.

Самый распространенный тип электрических схем - схемы электрические принципиальные . Они дают четкое понимание о работе установки, так как на таких схемах показывают все электрические цепи. На схемах электрических принципиальных условными обозначениями изображаются все электрические элементы, аппараты и устройства с учетом реальной последовательности их работы.

Если это схема какого либо станка, то отдельно показывается силовая часть схемы (электродвигатели и все аппараты, через которые они подключены) и схема управления. Все элементы на принципиальных схемах имеют буквенно-цифровые обозначения, которые выполняются согласно ГОСТ.

Схемы обычно дополняются различными диаграммами и таблицами переключения контактов, которые поясняют порядок срабатывания сложных элементов, например многопозиционных переключателей, временными диаграммами, показывающими последовательность срабатывания катушек реле.

На схеме может присутствовать спецификация с перечнем электрических аппаратов и других электротехнических устройств и элементов, входящих в схему, дополнительные поясняющие надписи. Прочитав принципиальную схему можно изучить и полностью разобраться как работает электрооборудование установки или станка.

Схемы электрические принципиальные могут быть выполнены совмещенным или разнесенным способом. Совмещенным способом обычно выполняют относительно несложные принципиальные схемы. Схемы в которых несколько двигателей и развитая схема управления в большинстве случаев выполняют разнесенным способом.

Отдельные элементы условных обозначений электрических аппаратов располагают в разных местах схемы, при этом увеличивается наглядность и упрощается чтение схем.

Для чтения принципиальных схем необходимо знать алгоритм функционирования схемы, понимать принцип действия приборов, аппаратов и систем автоматизации, на базе которых построена принципиальная схема.

По электрической принципиальной схеме выполняется проверка правильности электрических соединений при монтаже и наладке электрооборудования. Такие схемы незаменимы в эксплуатации и поиске неисправностей при проведении ремонта. Хотя я и встречал когда-то на заводе старых электриков работающих без схем (часто их просто не было), но это еще ни о чем не говорит. В этом случае людей выручало просто наличие опыта при обслуживании длительное время одних и тех же станков.

Если такого опыта нет, то поиск неисправностей даже в электрооборудовании станков относительно небольшой сложности может вызвать серьезные затруднения и растянуться на часы. Поэтому принципиальная электрическая схема это главная палочка-выручалочка любого электрика. Благодаря ей любую неисправность можно обнаружить и устранить в очень короткое время.

Используя электрические принципиальные схемы разрабатывают схемы соединений и подключения . По другому такие схемы в народе называют монтажные. Такие схемы показывают реальное расположение электродвигателей, электрических аппаратов и других элементов автоматизации на станке, в шкафах и на пультах управления. Все элементы на выполняются аналогично по тем же ГОСТ, как и на схемах принципиальных.

Упрощенная схема соединений и подключения трехфазного двигателя с помощью двух магнитных пускателей:

Все провода на схеме соединения и подключения имеют имеют свой уникальный номер, который после монтажа реальной схемы наносится на провод. На таких схемах провода идущие в одном направлении часто объединяют в жгуты или пучки и показывают одной толстой линией. Все соединения проводов выполняются только на зажимах электрических аппаратов или с помощью . Все соединения между частями отдельных шкафов и пультов управления выполняются тоже через клеммник, что значительно в дальнейшем облегчает обслуживания электрооборудования станков.

Если на принципиальных схемах отдельные элементы одного и того же аппарата могут находится в разных частях схемы, например, катушка пускателя - в цепях управления, а контакты в силовых цепях, то на схеме соединений и подключения все элементы того же пускателя показываются рядом. При этом выводы аппарата на схеме нумеруются таким же образом, как на реальном аппарате.

Например, для пускателя выводы катушки нумеруются - А - B , силовые контакт - 1-2, 3-4, 5-6, блокировочные 13-14. Это значительно облегчает монтаж электрооборудования. Человеку, который этим занимается не приходится думать где разместить сам аппарат (это уже показано на схеме) и куда какой провод подключать. Так как наличие номера на блокировочном контакте "13-14" говорит о том, что это контакт является нормально разомкнутым. Если бы контакт был нормально-замкнутым, то номер был бы "11-12".

Очень часто в паспортах станков схемы соединения и подключения показывают отдельно. На схемах подключения обозначают контуры станка или установки, основные элементы - двигатели, аппараты находящиеся на самом станке (путевые выключатели, датчики, электромагниты), шкафы и пульты управления, а также электрические проводки, которые это все связывают. Шкафы и пульты управления показывают пустыми контурами с клеммниками, на которые и приводят провода. А на схемах соединения изображают только какой-либо конкретный шкаф управления со всеми аппаратами, входящими в него и разводкой проводами. При этом, на схемах подключения упор делается на описание расположения и способов крепления проводов, жгутов, труб, электрических аппаратов и электродвигателей на самом станке.

Существует несколько вариантов выполнения схем соединения и подключения. Один из самых популярных способов в последнее время - это адресный метод. В этом методе провода на схемах не показывают, а только обозначают номерами около выводов электрических аппаратов. Хотя такую и схему и проще выполнить при использовании компьютерных программ, на мой взгляд, она получается существенно сложнее и часто приводит к ошибкам при монтаже.

Кроме электрических принципиальных и монтажных распространены структурные и функциональные схемы . Они помогают разобраться с общим принципом действия какого-либо сложного оборудования или отдельных элементов. Структурные схемы от функциональных отличаются тем, что в схемах первого типа определяются и обозначаются основные функциональные части устройства, а на на функциональных схемах объясняются процессы, которые в них протекают, т.е. разъясняется принцип работы устройства.

Например, такие схемы очень популярны при описании принципа работы сложных электронных устройств. В этом случае развернутая принципиальная схема может только запутать и испугать, особенно не опытных электриков, которые в большинстве своем очень бояться различной электроники. А так, разобравшись по структурной схеме из каких отдельных блоков состоит устройство, как эти блоки между собой взаимодействуют, поняв по функциональной схеме как работают конкретные блоки и элементы устройства и обратившись уже затем к проблемной части на принципиальной схеме, можно быстро решить любую возникшую проблему.

Существуют также объединенные схемы. На таких схемах может быть показаны схемы нескольких типов, например электрическая принципиальная и монтажная, или принципиальная и схема расположения. Структурная схема может быть совмещена с функциональной.

Электрические схемы должны оформляться в соответствии с ГОСТ 2.702-75. В коде схемы ее вид обозначается буквой Э (электрическая). Тип схемы обозначается цифрами:

  • 0 - объединенная
  • 1 - структурная
  • 2 - функциональная
  • 3 - принципиальная
  • 4 - монтажная
  • 5 - подключений
  • 6 - общая
  • 7 - расположения

Получается, что в коде электрической принципиальной схемы должно находится обозначение - Э3.

Для того чтобы научиться читать принципиальные схемы необходимо понимать обозначения отдельных элементов , и научиться представлять как будет работать система в целом. Рассмотрим основные элементы и принципы построения принципиальных электрических схем .

Обозначение линий связи на электрических схемах

Отдельные элементы на электрических схемах соединяют сплошными линиями, которые могут символизировать различные кабели, каналы, шины, провода.

Пересечение не соединенных проводов изображается следующим образом:

В местах соединения линий связи ставят точку.

Нулевой провод обознается буквой N, а заземление - значком:

Контакты

Важным элементом электросхем являются переключающие контакты, или как их называют ключи. Наиболее распространены замыкающие, размыкающие и переключающие контакты , их обозначение показано на рисунке.


Для того, чтобы понять как будет работать система при переключении контакта необходимо мысленно переместить элемент контакта, от одной линии связи к другой.

Элементы управления

Реле применяется во многих электрических приводах.

При прохождении тока через обмотку реле, происходит переключение контакта, связь между реле управления и контактом может изображаться пунктирной линией.

Также связанные реле и контакт могут иметь одинаковое буквенное обозначение.

Реле времени по переднему и по заднему фронту обозначаются:


Геркон - переключающий контакт, срабатывающий при воздействии магнитного поля имеет следующую электрическую схему:

Исполнительные механизмы

И электромагниты наиболее распространенные исполнительные механизмы в электрических системах:


Источники энергии

Обозначение генератора - устройства, преобразующего механическую энергию в электрическую показано на рисунке.

Другие источники питания показаны на следующей картинке.


Сигнальные устройства

На электрических схемах достаточно часто обозначаются сигнальные устройства - лампы, светодиоды. Изображают эти устройства следующих образом:


Измерительные приборы

Наиболее часто на электрических схемах встречаются обозначения амперметра, вольтметра , или обобщенное обозначение измерительного прибора.

Общие элементы

Немногие схемы обходятся без таких элементов как резистор, конденсатор, диод . Обозначение этих устройств показано на следующей иллюстрации.


Обозначение тиристоров и операционных усилителей показано на рисунке.


Обозначение транзисторов на схеме

Электрическая схема транзисторов - элементов электрической системы способных управлять током в выходной цепи при воздействий входного сигнала, показана на рисунке.


Логические элементы

На электрических схемах можно встретить два способа обозначения логических элементов "И", "ИЛИ", "ДА", "НЕ".


Порядок чтения электросхемы

  1. Провести общее ознакомление с электрической схемой, прочитать все примечания, технические требования.
  2. Сопоставить обозначения элементов на электросхеме с .
  3. Найти на схеме источники питания, определить род тока.
  4. Найти на электрической схеме электродвигатели, определить их систему питания.
  5. Определить аппараты защиты электросистемы плавкие предохранители, автоматический выключатели и т.п., выявить область их работы.
  6. Выделить на электросхемесхеме элементы управления, определить какие цепи задействуются, или отключатся, коммутируются при переключении каждого узла управления.
  7. Провести анализ работы каждой электрической цепи электросхемы, выявить на ней основные и вспомогательные аппараты, определить условия их работы, при необходимости ознакомиться с технической документацией на электрические приборы.
  8. На основе анализа работы отдельных электрических цепей, сделать выводы о работе электрической системы в целом.

Мы рассмотрели основные обозначения элементов электропривода, зная которые вы сможете научиться читать некоторые электрические схемы. Безусловно, что для понимания работы сложных электросистем по схемам вам предстоит изучить и другие обозначения. Вы можете рассказать о том, какие обозначения вы хотели бы увидеть в комментариях к статье.

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток . Их задача – соединять радиоэлементы.


Точка, где соединяются три и более проводников, называется узлом . Можно сказать, в этом месте проводки спаиваются:


Если пристально вглядеться в схему, то можно заметить пересечение двух проводников


Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.


Итак, давайте первым делом разберемся с надписями. R – это значит . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод , стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды


а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные


Терморезисторы


Тензорезисторы


Варисторы

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности


а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации


а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с разными группами контактов


Предохранители


а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры


Биполярный транзистор


Однопереходный транзистор


Структурные электрические схемы

Разрабатываются на первом этапе проектирования . На структурных схемах отображаются основные элементы (трансформаторы , линии электропередачи, распределительные устройства - в виде прямоугольников). Этот вид схем дает общее представление о работе электроустановки.

Функциональные электрические схемы - это наиболее общие схемы в отношении уровня абстракции и обычно показывают лишь функциональные связи между составляющими данного объекта и раскрывающими его сущность и дающие представление о функциях объекта, изображённого на данном чертеже . Каких-либо стандартов в изображении условных графических обозначениях этих схем нет. Действуют лишь общие требования к оформлению конструкторской документации или технологической.

Принципиальные электрические схемы - это чертежи , показывающие полные электрические и магнитные и электромагнитные связи элементов объекта, а также параметры компонентов, составляющих объект, изображённый на чертеже. Здесь существуют много стандартов как на оформление чертежей, так и на условные графические изображения компонентов. На территории бывшего СССР действует государственный стандарт, однако с появлением принципиально новых компонентов пришлось отступать от стандартов, так как условных изображений просто не существует, поэтому реально наиболее общего стандарта на УГО фактически нет. В зарубежных странах приняты стандарты IEC , DIN и ANSI и другие национальные стандарты, но на практике у производителей очень часто используется корпоративные стандарты, однако этот чертёж не учитывает габаритных размеров и расположения деталей объекта. В энергетике используются как однолинейные, так и полные схемы.

Эта разновидность схем предназначена в основном для наиболее полного понимания всех процессов, происходящих в цепи или на участке цепи, а также для расчёта параметров компонентов.

По уровню абстракции занимают среднее положение между функциональными и монтажными.

Монтажные схемы

Монтажные схемы - это чертежи, показывающие реальное расположение компонентов как внутри, так и снаружи объекта, изображённого на схеме. Предназначены, в основном, для того, чтобы можно было изготовить объект. Учитывает расположение компонентов схемы и электрических связей (электрических проводов и кабелей). Действуют лишь общие требования к оформлению конструкторской документации.

Кабельные планы

Кабельные планы - это чертежи, показывающие расположение и марки электрических проводов и кабелей. Действуют лишь общие требования к оформлению конструкторской документации.

Топологические электрические схемы - это чертежи, показывающие расположение компонентов изображённого объекта. В микроэлектронике это обычно изображение чертежа микрокристалла интегральных микросхем.

Мнемонические схемы

Мнемонические схемы - это обычно плакаты с указанием реального состояния действующего положения коммутационной аппаратуры на объекте, над которым совершается управление его режимами. В основном используются в диспетчерских пунктах на энергетических объектах.

В настоящее время активно вытесняется системами компьютерной и компьютеризированными системами управления контроля и сигнализации (SCADA) с функциями ручного управления и принятия решений оператором.

Ссылки

  • ГОСТ 2.701-2008. ЕСКД. Схемы. Виды и типы. Общие требования к выполнению

Wikimedia Foundation . 2010 .

  • Электрoннaя бумaгa
  • Электрические сети Армении

Смотреть что такое "Электрическая схема" в других словарях:

    ЭЛЕКТРИЧЕСКАЯ СХЕМА - графическое изображение электрических цепей электронных, электро или радиотехнических устройств, на котором условными обозначениями показаны элементы данного устройства и соединения между ними … Большой Энциклопедический словарь

    ЭЛЕКТРИЧЕСКАЯ СХЕМА - изображение при помощи линий и условных знаков соединений различных электр. приборов. Различают Э. с. плановые и развернутые: в первых изображения приборов, их обмоток и контактов сосредоточены в одном месте; во вторых провода изображаются по… … Технический железнодорожный словарь

    электрическая схема - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric circuitelectrical network … Справочник технического переводчика

    ЭЛЕКТРИЧЕСКАЯ СХЕМА - гра фическое изображение электрических цепей (см. (17)), содержащее условные обозначения элементов цепей и показывающее связи этих элементов между собой. Различают Э. с.: а) принципиальные, определяющие полный состав элементов изделия… … Большая политехническая энциклопедия

    электрическая схема - графическое изображение электрических цепей электронных, электро или радиотехнических устройств, на котором условными обозначениями показаны элементы данного устройства и соединения между ними. * * * ЭЛЕКТРИЧЕСКАЯ СХЕМА ЭЛЕКТРИЧЕСКАЯ СХЕМА,… … Энциклопедический словарь

    электрическая схема - elektrinė schema statusas T sritis Standartizacija ir metrologija apibrėžtis Sąlyginiais ženklais aiškinama elektrinės grandinės elementų jungimo tvarka. atitikmenys: angl. electric diagram; electrical schematic vok. elektrische Schaltung, f rus … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    электрическая схема - elektrinė schema statusas T sritis chemija apibrėžtis Sąlyginiais ženklais aiškinama grandinės elementų jungimo tvarka. atitikmenys: angl. circuitry; electric circuit rus. электрическая схема … Chemijos terminų aiškinamasis žodynas

    Электрическая схема - 2.1. Электрическая схема графический конструкторский документ, на котором при помощи графических обозначений изображены электрические составные части объекта и связи между ними. На некоторых типах схем связи могут быть не изображены.

Любое радиотехническое или электротехническое устройство состоит из определенного количества различных электро- и радиоэлементов (радиодеталей). Возьмем, к примеру, самый обычный утюг: в нем есть регулятор температуры, лампочка, нагревательный элемент, предохранитель, провода и штепсельная вилка.

Утюг представляет собой электротехническое устройство, собранное из специального набора радиоэлементов, обладающих определенными электрическими свойствами, где работа утюга основана на взаимодействии этих элементов между собой.

Для осуществления взаимодействия радиоэлементы (радиодетали) соединяются друг с другом электрически, а в некоторых случаях их размещают на небольшом расстоянии друг от друга и взаимодействие происходит путем образованной между ними индуктивной или емкостной связи.

Самый простой способ разобраться в устройстве утюга — это сделать его точную фотографию или рисунок. А чтобы представление было исчерпывающим можно сделать несколько фотографий внешнего вида крупным планом с разных ракурсов, и несколько фотографий внутреннего устройства.

Однако, как Вы заметили, этот способ представления об устройстве утюга нам вообще ничего не дает, так как на фотографиях видна только общая картинка о деталях утюга. А из каких радиоэлементов он состоит, какое их назначение, что они представляют, какую функцию в работе утюга выполняют и как связаны между собой электрически нам не понятно.

Вот поэтому, чтобы иметь представление, из каких радиоэлементов состоят подобные электрические устройства, разработали условные графические обозначения радиодеталей. А чтобы понимать, из каких деталей составлено устройство, как эти детали взаимодействуют друг с другом и какие при этом протекают процессы, были разработаны специальные электрические схемы.

Электрическая схема представляет собой чертеж, содержащий в виде условных изображений или обозначений составные части (радиоэлементы) электрического устройства и соединения (связи) между ними. То есть электрическая схема показывает, как осуществляется соединение радиоэлементов между собой.

Радиоэлементами электрических устройств могут являться резисторы, лампы, конденсаторы, микросхемы, транзисторы, диоды, выключатели, кнопки, пускатели и т.д., а соединения и связи между ними могут быть выполнены монтажным проводом, кабелем, разъемным соединением, дорожками печатных плат и т.д.

Электрические схемы должны быть понятны всем кому приходится с ними работать, и потому их выполняют в стандартных условных обозначениях и применяют по определенной системе, установленной государственными стандартами: ГОСТ 2.701-2008; ГОСТ 2.710-81; ГОСТ 2.721-74; ГОСТ 2.728-74; ГОСТ 2.730-73.

Различают три основных вида схем: структурные , принципиальные электрические , схемы электрических соединений (монтажные ).

Структурная схема (функциональная) разрабатывается на первых этапах проектирования и предназначена для общего ознакомления с принципом работы устройства. На схеме прямоугольниками, треугольниками или символами изображаются основные узлы или блоки устройства, которые между собой связываются линиями со стрелками, указывающими направление и последовательность соединений друг с другом.

Принципиальная электрическая схема определяет, из каких радиоэлементов (радиодеталей) состоит электро- или радиотехническое устройство, как эти радиодетали связаны между собой электрически, и как они взаимодействуют друг с другом. На схеме детали устройства и порядок их соединения изображают условными знаками, символизирующими эти детали. И хотя принципиальная схема не дает представления о габаритах устройства и размещении его деталей на монтажных платах, щитах, панелях и т.п., зато она позволяет детально разобраться в его принципе работы.

Схема электрических соединений или ее еще называют монтажная схема , представляет собой упрощенный конструктивный чертеж, изображающий электрическое устройство в одной или нескольких проекциях, на котором показываются электрические соединения деталей между собой. На схеме изображаются все радиоэлементы, входящие в состав устройства, их точное расположение, способы соединения (провода, кабели, жгуты), места присоединений, а также входные и выходные цепи (соединители, зажимы, платы, разъемы и т.п.). Изображения деталей на схемах даются в виде прямоугольников, условных графических обозначений, или в виде упрощенных рисунков реальных деталей.

Разница между структурной, принципиальной и монтажной схемой будет показана дальше на конкретных примерах, но главный упор мы будем делать на принципиальные электрические схемы.

Если внимательно рассмотреть принципиальную схему любого электрического устройства, то можно заметить, что условные обозначения некоторых радиодеталей часто повторяются. Подобно тому, как слово, фраза или предложение состоят из чередующихся в определенном порядке букв собранных в слова, так и электрическая схема состоит из чередующихся в определенном порядке отдельных условных графических обозначений радиоэлементов и их групп.

Условные графические обозначения радиоэлементов образуются из простейших геометрических фигур: квадратов, прямоугольников, треугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по системе, предусмотренной стандартом ЕСКД (единая система конструкторской документации), дает возможность легко изобразить радиодетали, приборы, электрические машины, линии электрической связи, виды соединений, род тока, способы измерения параметров и т.п.

В качестве графического обозначения радиоэлементов взято их предельно упрощенное изображение, в котором либо сохранены их наиболее общие и характерные черты, либо подчеркнут их основной принцип действия.

Например. Обычный резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой , обладающий определенным электрическим сопротивлением. Поэтому на электрических схемах резистор так и обозначают в виде прямоугольника , символизирующего форму трубки.

Благодаря такому принципу построения запоминание условных графических обозначений не представляет особого труда, а составленная схема получается удобной для чтения. И для того, чтобы научиться читать электрические схемы, прежде всего, нужно изучить условные обозначения, так сказать «азбуку» электрических схем.

На этом мы закончим. В разберем три основных вида электрических схем, с которыми Вам часто придется сталкиваться при разработке или повторении радиоэлектронной или электротехнической аппаратуры.
Удачи!